• Title/Summary/Keyword: Artificial channel

Search Result 282, Processing Time 0.025 seconds

Normal Depth of Best Section (최량수리단면의 등류수심)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.729-736
    • /
    • 2002
  • The computation of normal depth is one of the most important parts in the design of open channel flow, and the best section is in general the most economic section in the case of constructing artificial open channels. Thus the determination of the normal depth of the best section is the essential item in the design of most open channel flows. To estimate the frictional forces a power law is introduced, which is applicable to most situations in open channel flows. Explicit and consistent forms of equations are deduced for the calculation of normal depth of triangular, rectangular and trapezoidal best sections. Furthermore the equations of normal depth are found to have the same form as those of pipe diameter for the design of pipe flow.

Proposal of Functional Assessment for Wetland-type Abandoned Channel (습지형 구하도의 기능평가 제안)

  • Kang, Su Jin;Kang, Joon Gu;Hong, Il;Yeo, Hong Koo
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.547-559
    • /
    • 2012
  • Abandoned channel is vestiges of running in the past. Abandoned channels have been formed mostly by artificial river maintenance through channel straightening in Korea. Managed properly, these now abandoned channels can provide habitat for wildlife, maintain biodiversity of aquatic life, security against flooding and recreation area for human. However, because the areas are officially classified as abandoned, the channels is collapsing and decaying from years of neglect. This study suggested functional assessment for wetland-type abandoned channel in order to provide appropriate management and investment. For this reason, The study will examine and evaluate these channels with regard to the following four major criteria (Natureless, Habitat, Water-friendliness and Water quality) and 21 indices. Consequently, abandoned channel in two Nakdong river sites, site 1 was needed for protection or improvement in the medium to longer term, while site 2 was in good condition. This evaluation method will be helpful to manage wetland-type abandoned channel in Korea and will be able to use National River Health Program.

Geomorphological Processes and Changes of Waterfalls formed by Channel Avulsion (하도 변위에 의한 폭포의 형성과 변화)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.5
    • /
    • pp.615-628
    • /
    • 2013
  • The waterfall can be formed by difference between the height of up and down part in new channel, is formed by channel avulsion that rapidly changing of river channel course. This study described types and processes of waterfalls by channel avulsion, and analyzed rates and factors of waterfall recession, on object to 7 waterfalls in South Korea. Bulyeong falls at Uljin-gun, Yongchu falls at Yeongdeok-gun, Jikyeon falls at Yanggu-gun and Gwangpum falls at Uljin-gun are formed by natural incised meander cutoff. Samhyeongje falls at Taebaek-si and Guryong falls are formed by river capture processes, and Palbong falls at Chungju-si is formed by artificial channel cutting for farm land secured. The locations of waterfalls gradually moved to upstream over time by head erosion. The recession rates were measured by 3~4m/ka on Bulyeong falls, Yongchu falls, Jikyeon falls and Samhyeongje falls, to estimate of formation age. Recession rates of these 4 waterfalls were analyzed that have clearly positive correlations with drainage area, precipitation, corrosion and weathering capability of bedrock, and initial height of waterfall.

  • PDF

Reduction Effect for Deposition in Navigation Channel with Vegetation Model (식생모형에 의한 항로매몰 저감 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk;Kim, Ick-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.659-664
    • /
    • 2012
  • Coastal vegetaion consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of waves and sediments stabilization are often listed among these services. From this point of view, artificial vegetation model is an effective method of controlling sea bed and stabilization without damaging the landscape or the stability of the coastaline. In this study, numerical and hydraulic physical test for predicting deposition proces of a navigation channel caused by wave action is proposed. In the numerical model, we develop a numerical model for describing the wave attenuation and sediment transport in a navigation channel with a vegetation area. In addition, hydraulic model tests is performed in a navigation channel with irregular waves to examine the effect of vegetation in relation to deposition reduction in navigation channel. A comparison between the results of hydraulic and numerical tests shows resonable agreement.

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

Effect of Highly Concentrated Turbid Water on the Water Quality and Periphytic Diatom Community in Artificial Channel (인공수로에서 고농도 탁수가 수질 및 부착 규조류 군집에 미치는 영향)

  • Yoon, Sung-Ae;You, Kyung-A;Park, Ji-Hyoung;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.75-84
    • /
    • 2011
  • We examined the effect of the turbid water on the periphytic diatom community in an artificial stream system. The artificial stream was constructed with transparent acryl and composed of four channels. Each channel ($20\;cm{\times}200\;cm{\times}40\;cm$) was supplied continuously with eutrophic lake water. In order to the freely colonize and grow diatoms, artificial substrate was installed with commercial slide glass soaked in 1% agar. Prior to introducing turbid water, the artificial stream was operated with lake water for 6 days to permit the propagation of diatom community on the substrates. The turbid water prepared with sediment sieved with ${\varphi}$ $64\;{\mu}m$ at $2\;g\;L^{-1}$ (final concentration, 300 NTU) was provided daily for 50 minute duration. The experiment was conducted for 7 days with manipulated experimental condition of light ($50{\sim}80\;{\mu}mol\;m^{-2}s^{-1}$, light:dark=24:0), temperature ($10{\pm}1^{\circ}C$), and flow rate ($0.31\;cm\;s^{-1}$). Sampling and analysis were conducted daily for water quality and diatom. Turbidity of the water varied 162.2~173.2 NTU during the experiment. After introduction of turbid water, DO, pH and TN were decreased, while SS and TP increased significantly. A total of 14 genera and 47 species of diatoms was observed on the artificial substrates during the experimental period. Of these, Navicula appeared to be a most dominant genus with 10 species, followed by Cymbella (6 species), Fragilaria (6 species) and Gomphonema (5 species). Achnanthes minutissima was the most dominant species (>70% of total frequency) in both control and treatment experiments. Increase in diatom abundance lasted for three days since turbid water introduction, after that they gradually decreased by the termination of the experiment. These results suggest that frequent supply of highly-concentrated turbid water significantly decreases the periphytic diatom community, and retard the recovery of the stable food-web within the stream.

An Experimental Study on the Variation of Hydraulic Characteristics due to Vegetation in Open Channel (개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • An understanding of the hydraulic characteristics in the compound channel with vegetation is important in designing stream restorations or managing the floodplain. A laboratory flume of 16 m long and 0.8 m wide was used for analysis of the hydraulic characteristics in the single section channel and the compound channel with artificial vegetation. Slope of experimental channel is 0.5 %. Discharges are ranged from $0.2\;m^3/s\;to\;$0.4\;m^3/s$. The experiments were done by changing water depth ratio, vegetation density and vegetation location. When water depth ratio in the single section channel with vegetation increase up to 3.5, the results showed that the increment of water depth due to vegetation may be ignored in practice. The maximum increment of water depth was measured up to 6 % in the compound channel with vegetation and the range of velocities increment in the low flow channel was from 25 % to 85 % compared with section average velocities. As the vegetation densities increase and water depth ratios decrease, the velocity of the low flow channel increased. The range of roughness coefficients in the vegetated reaches were estimated from 0.055 to 0.14 in the single section channel and from 0.063 to 0.085 in the compound channel using HEC-RAS and RMA-2 model.

Artificial reverberation algorithm to control distance of phantom sound source for surround audio system (서라운드 오디오 시스템을 위한 가상음원의 거리를 조절할 수 있는 인공잔향기)

  • Shim, Hwan;Seo, Jeong-Hun;Sung, Koeng-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.447-450
    • /
    • 2005
  • Multi-channel artificial reverberation algorithm to control perceived direction and distance is described in this paper. In conventional algorithms using IIR filters, reverberation time is the only parameter to be controlled. Moreover, since the convolution-based conventional algorithms apply only same impulse responses, but not considering sound localization, it was not realistic enough. The new algorithm proposed in this paper utilizes early reflections segmented according to the azimuth from which direct sound comes and controls perceived direction by panning the direct sound, and controls perceived distance by adjusting Energy Decay Curve (EDC) of reverberation and gain of the direct sound. In addition, the algorithm enhances Listener Envelopment(LEV) to make late reverberation incoherent among channels.

  • PDF

Hydraulic Experiment on the Effects of Beach Erosion Prevention with Flexible Coastal Vegetation (연성 식생모형에 의한 해빈침식방지 특성에 관한 실험적 연구)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Coastal vegetation consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of currents and waves and sediment stabilization are often listed among these services. From this point of view, artificial seaweed is an effective method of controlling sea bed sediment and stabilization without damaging the landscape or the stability of the coastline. A series of hydraulic experiments were performed in a wave channel with regular and irregular waves to examine the effect of artificial seaweed in relation to scouring and beach erosion prevention. Based on the results of these experiments, the coastal vegetation model is efficient against scouring and beach erosion.

CONVERGENCE CHARACTERISTICS OF MULTI-STAGE RUNGE-KUTTA METHODS IN INCOMPRESSIBLE VISCOUS FLOW COMPUTATIONS (비압축성 점성유동 해석에서의 Multi-Stage Runge-Kutta 기법의 수렴특성 연구)

  • Park Won C.;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.73-80
    • /
    • 1997
  • Objective of the present study is to examine the convergence characteristics of the various multi-stage Runge-Kutta methods in solving the incompressible Navier-Stokes equations of a time-marching from casted by the artificial compressibility method. Convergence characteristics are examined over 2-stage, 4-stage and hybrid type (using 4-, 3-, 2-stages sequentially) Runge-Kutta methods for a laminar lid-driven cavity flow, and also for a turbulent bump channel flow using Chien's low-Reynolds number turbulence model. Efforts are made to establish a stable and fast convergent multi-stage Runge-Kutta method with minimal artificial dissipations.

  • PDF