• Title/Summary/Keyword: Artificial RNA

Search Result 104, Processing Time 0.028 seconds

Development, Structure, and Diversity of Microbial Lotic Calcareous Mat Communities

  • Bang, Sookie S.;Anderson, Cynthia M.;Bergmann, David J.;Sieverding, Heidi L.;Flanegan, Amy L.;Braaten, Amanda S.;Masteller, Amanda R.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.118-118
    • /
    • 2008
  • The phylogenetic diversity of microbial communities in calcareous mats from Spearfish Creek, a freshwater stream located in the Black Hills of South Dakota, was examined using PCR-based 16S rDNA sequence analysis. In this study, two types of calcareous mats were compared: mature mats formed on the natural substrate of rock surfaces and developing mats on an artificial substrate of glass slides. Among 63 unique isolates from a clone library of 16S rRNA genes from mature mat samples, there were 8 phyla of Bacteria represented. The predominant phylum was Proteobacteria (48%), with the $\beta$ subclass being the largest group. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes from slide samples collected at intervals for four months showed considerable diversity of the microbial community from the earliest stages of community development. Amplicons isolated from DGGE gels and sequenced indicated that community succession has occurred without increasing microbial diversity. However, light microscopic analysis revealed a significant increase in microbial cell density throughout the community development. Scanning electron microscopy of mat samples provides evidence that diatoms are also important members of calcareous mat communities.

  • PDF

THE EFFECT OF GENISTEIN IN ORAL SQUAMOUS CELL CARCINOMA WITH RESPECT TO THE ANGIOGENESIS AND BASEMENT MEMBRANE INVASION (구강편평세포암종에서 신생혈관화와 기저막침습에 미치는 제니스타인의 효과)

  • Kim, Yong-Hun;Yun, Pil-Young;Myoung, Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.434-439
    • /
    • 2002
  • Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers. OSCC generally has a poor prognosis due to its tendency towards a local invasion and subsequent metastasis, which is mediated by multiple proteolytic enzymes and angiogenesis. Soy products contain high levels of isoflavonoids, including the tyrosine kinase inhibitor, genistein, which has been identified as a potent inhibitor of cell proliferation and in vitro angiogenesis. The purpose of this in vitro study is to evaluate the anti-cancer effect of genistein with respect to the angiogenesis and basement membrane invasion in OSCC. The highly invasive OSCC cell line, HSC-3 cells were cultured in the presence of $10{\mu}M$ genistein for 24h. To evaluate the effects of genistein on the invasiveness and the gelatinolytic activity, in vitro invasion assay and zymography were performed. In order to evaluate the effect on the VEGF and bFGF mRNA expression, RT-PCR and northern hybridization reaction, and chemiluminescence detection were applied. The in vitro invasion assay showed that the genistein treatment reduced the cellular invasion through the artificial basement membrane and significant difference between the control group and the genistein treated group was shown in MMP-2 activity. Especially, the 62 kDa activated form of MMP-2 in the control group was 1.8 times higher than that in the genistein treated group. The results of the northern blot analyses indicated that VEGF mRNA expression in the genistein treated group was significantly down regulated. This study showed that genistein inhibits angiogenesis and reduces basement membrane invasion in OSCC. It seems to support the possibility of genistein as an anti-cancer agent.

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

Artificial Mutation for Silkworm Molecular Breeding Using Gene Scissors (유전자 가위의 이용과 누에 분자 육종을 위한 인위적 돌연변이 유발)

  • Hong, Jeong Won;Jeong, Chan Young;Yu, Jeong Hee;Kim, Su-Bae;Kang, Sang Kuk;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.701-707
    • /
    • 2020
  • Gene editing technology using the clustered regularly interspaced short palindromic repeat (CRISPR) and the CRISPR associated protein (Cas)9 has been highly anticipated in developing breeding techniques. In this study, we discuss gene scissors as a tool for silkworm molecular breeding through analysis of Bombyx mori Kynurenine 3-Monooxygenase (BmKMO) gene editing using the CRISPR/Cas9 system and analysis of generational transmission through mutagenesis and selective crossing. The nucleotide sequence of the BmKMO gene was analyzed, and three guide RNAs (gRNAs) were prepared. Each synthesized gRNA was combined with Cas9 protein and then analyzed by T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA and Cas9 complexes were subsequently microinjected into the silkworm embryos; the hatching rate was 18% and the incidence of mutation was 60%. The gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed. In homozygotes generated by self-crossing, a mutant phenotype was observed. These results suggest that silkworm molecular breeding using the CRISPR/Cas9 system is possible and could be an effective way of shortening the time required.

Studies on the Generation of Transgenic Cow Producing Human Lactoferrin in the Milk (락토페린을 우유에서 생산하는 형질전환 젖소의 개발에 관한 연구)

  • 한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.371-378
    • /
    • 1997
  • Human lactoferrin (hLF) was expressed in the mammary gland of transgenic mice. Expresion of hLF was achieved by palcing its cDNA under the control of bovine $\beta$-casein gene. To improve the hLF expression level, two artificial introns were introduced into the expression vector. One intron is a hybrid-splice consisting of bovine $\beta$ casein intron 1 and rabbit $\beta$-casem intron II. The other intron is a DNA fragment spanning intron 8 of bovine $\beta$ casein gene. Trans sgenic mice were developed which expressed hLF in their milk. Twenty lines of transgenic mice were produced. hLF was present in the milk at concentrations of 1 ~ 200 ${\mu}\textrm{g}$ / ml. hLF RNA was only detected in the mammary gland of transgenic mice. The expressed RNA was cor r rectly spliced at the exon /intron junctions. To generate transgenic cows secreting active hLF in their milk, we transferred the DNA-injected bovine embryos to recipient heifers by surgical a and non-surgical methods out of 68 embryos transferred to 51 recipients by surgical or non-surgical method, 7 calves were normally born. Effect of embryo quality of DNA-injected blastocysts on pregnancy rate after transfer was investig a ated. Higher pregnancy rate of (38.9%) DNA-injected embryos was shown in excellent embryos. Pregnancy rates in the groups of good a and fair embryos were 15.4 and 14.3%, respectively. Effect of culture period of DNA-injected b bovine embryos on pregnancy rate after transfer was investigated. When Day-6 blastocysts of cuI ture were transferred, there was no pregnancy. Pregnancy rates of Day-7 and -8 blastocysts were 28.6 and 33.3%, respectively. There was no difference on pregnancy rate between Day-7 a and -8 bovine blastocysts after DNA injection. Thus, we established the techniques for transfer a and culture of DNA-injected bovine embryos. In a addition, factors affecting the pregnancy rate of DNA-injected embryos after transfer were investigated .

  • PDF

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Detection of Norovirus in Contaminated Ham by Reverse Transcriptase-PCR and Nested PCR

  • Kim, Seok-Ryel;Kim, Du-Woon;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Myung-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.651-654
    • /
    • 2008
  • In order to enhance the efficacy of norovirus detection by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR, this study developed a norovirus mRNA concentration method using poly oligo dT-conjugated magnetic beads. An efficient norovirus detection protocol was performed on commercial ham using 2 viral elution buffers (glycine buffer and Tris beef extract buffer) and 2 concentration solutions [polyethylene glycol (PEG) and zirconium hydroxide]. The different approaches were verified by RT-PCR and nested PCR. This method was performed on ham in less than 8 hr by artificial inoculation of serial dilutions of the virus ranging from 1,000 to 1 RT-PCR unit/mL. The viral extraction and concentration method had 10-fold higher sensitivity using the combination of Tris beef extract buffer and PEG as compared to glycine buffer and zirconium hydroxide. This method proved that RT-PCR and nested PCR have the sensitive ability to detect norovirus in commercial ham, in that norovirus was successfully detected in artificially contaminated samples at a detection level as low as 1-10 RT-PCR unit/mL. Overall, such a detection limit suggests this protocol is both quick and efficient in terms of its potential use for detecting norovirus in meat products.

Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.547-557
    • /
    • 2016
  • This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

The Effects of Iridoid Compounds on Wound Healing (Iridoid 화합물이 창상 치유에 미치는 영향)

  • Lee, Sung-Woo;Kho, Hong-Seop;Lee, Sang-Goo
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 1999
  • Aucubin, the natural product, which is isolated from Aucuba japonica, has a variety of pharmacological effects such as liver-protective function, inhibition of liver RNA and protein biosynthesis, hypotensive activity and antimicrobial effect, etc. This study was performed to investigate the effects of iridoid compounds on wound healing. The author prepared 0.1% aucubin solution and 0.1% aucubin ointment as an active form, aucubigenin to which aucubin was converted by ${\beta}$-glucosidase. Artificial surgical wound was made on either 1cm lateral side of the dorsal midline along the axis of spine of Sprague-Dawley rats under sterile technique. Application of 0.1% aucubin solution or 0.1% aucubin ointment to surgical wound was done daily. Light microscopic examination was performed on the postsurgical 3 days, 5 days, and 9 days. The 0.1% aucubin solution group epithelialized earlier than the control group and the fibrosis of granulation tissue of both aucubin groups were more prominent than the control group. Collectively, this study suggests the possibility of aucubin as a topical agent. Further research should be performed on the mechanism of aucubin on wound healing and proper formulation for effective topical agents.

  • PDF

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.