Browse > Article
http://dx.doi.org/10.5851/kosfa.2016.36.4.547

Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems  

Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Publication Information
Food Science of Animal Resources / v.36, no.4, 2016 , pp. 547-557 More about this Journal
Abstract
This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.
Keywords
natural preservative; antimicrobial; safety; food application;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Je, J. Y. and Kim, S. K. (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J. Agric. Food Chem. 54, 6629-6633.   DOI
2 Jessen, H., Hamill, P., and Hancock, R. E. W. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 479-491.
3 Kang, D. H., Koohmaraie, M., and Siragusa, G. R. (2001b) Application of multiple antimicrobial interventions for microbial decontamination of commercial beef trim. J. Food Prot. 64, 168-171.   DOI
4 Kim, B. H., Jang, A. R., Lee, S. O., Min, J. S., and Lee, M. H. (2004) Combined effect of electron-beam (beta) irradiation and organic acids on shelf life of pork loins during cold storage. J. Food Prot. 67, 168-171.   DOI
5 Kim, Y. M., Paik, H. D., and Lee, D. S. (2002) Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic package film. J. Sci. Food Agric. 82, 998-1002.   DOI
6 Koohmaraie, M., Arthur, T. M., Bosilevac, J. M., Guerini, M., Shackelford, S. D., and Wheeler, T. L. (2005) Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Sci. 71, 79-91.   DOI
7 KFDA (2015) Korea Food Additives Code. Available from: http://www.foodnara.go.kr:9010/20121228_051106. Accessed Feb. 20, 2016.
8 Lampe, M. F., Ballweber, L. M., Isaacs, C. E., Patton, D. L., and Stamm, W. E. (1998) Killing of Chlamydia trachomatis by novel antimicrobial lipids adapted from compounds in human breast milk. Antimicrob. Agents Chemother. 42, 1239-1244.
9 Lee, K. A., Moon, S. H., Kim, K. T., Nah, S. Y., and Paik, H. D. (2011) Antimicrobial effect of kaempferol on psychrotrophic Bacillus cereus strains outbreakable in dairy products. Korean J. Food Sci. An. 31, 311-315.   DOI
10 Lavermicocca, P., Valerio, F., and Visconti, A. (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 69, 634-640.   DOI
11 Lee, D. U., Heinz, V., and Knorr, D. (2003) Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innov. Food Sci. Emerg. Technol. 4, 387-393.   DOI
12 Lee, J. H., Lee, Y. J., Ahn, S. H., Lee, N. K., and Paik, H. D. (2012) Antimicrobial properties of whole milk with Inula britannica extract against Bacillus cereus strains during storage. Milchwissenschaft 67, 315-317.
13 Lee, N. K., Han, E. J., Han, K. J., and Paik, H. D. (2013) Antimicrobial effect of bacteriocin KU24 produced by Lactococcus lactis KU24 against methicillin-resistant Staphylococcus aureus. J. Food Sci. 78, M465-M469.   DOI
14 Lee, N. K., Jung, B. S., Na, D. S., Yu, H. H., Kim, J. S., and Paik, H. D. (2016) The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT-Food Sci. Technol. 65, 746-750.   DOI
15 Lee, N. K., Lee, J. H., Lim, S. M., Lee, K. A., Kim, Y. B., Chang, P. S., and Paik, H. D. (2014) Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J. Dairy Sci. 97, 5383-5386.   DOI
16 Lemay, M. J., Choquette, J., Delaquis, P. J., Gariépy, C., Rodrigue, N., and Saucier, L. (2002) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int. J. Food Microbiol. 78, 217-226.   DOI
17 Mason, T. L. and Wasserman, B. P. (1987) Inactivation of red beet beta-glucan synthase by native and oxidized phenolic compounds. Phytochem. 26, 2197-2202.   DOI
18 Logue, C. M., Sheridan, J. J., and Harrington, D. (2005) Studies of steam decontamination of beef inoculated with Escherichia coli O157:H7 and its effect on subsequent storage. J. Appl. Microbiol. 98, 741-751.   DOI
19 Lin, Y. T., Labbe, R. G., and Shetty, K. (2004) Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 70, 5672-5678.   DOI
20 Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., and Yu, L. J. (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64, 60-65.   DOI
21 Mastromatteo, M., Incoronato, A. L., Conte, A., and Del Nobile, M. A. (2011) Shelf life of reduced pork back-fat content sausages as affected by antimicrobial compounds and modified atmosphere packaging. Int. J. Food Microbiol. 150, 1-7.   DOI
22 Mastromatteo, M., Lucera, A., Sinigaglia, M., and Corbo, M. R. (2010) Synergic antimicrobial activity of lysozyme, nisin, and EDTA against Listeria monocytogenes in ostrich meat patties. J. Food Sci. 75, M422-M429.   DOI
23 Mohamed, M. H. and Mansour, H. A. (2012) Incorporating essential oils of marjoram and rosemary in the formulation of beef patties manufactured with mechanically deboned poultry meat to improve the lipid stability and sensory attributes. LWT-Food Sci. Technol. 45, 79-87.   DOI
24 Mohanka , R. and Priyanka. (2014) Plant extract as natural food preservative against spoilage fungi from processed food. Int. J. Curr. Microbiol. App. Sci. 3, 91-98.
25 Nissen, H., Maugesten, T., and Lea, P. (2001) Survival and growth of Escherichia coli O157:H7, Yersinia enterocolitica and Salmonella enteritidis on decontaminated and untreated meat. Meat Sci. 57, 291-298.   DOI
26 Nom, M. J. R. and Rombouts, F. M. (1992) Fermentative preservation of plant foods. Appl. Bacterial Symp. Suppl. 73, 1365-1478.
27 Mor, A. and Nicolas, P. (1994) Isolation and structure of novel defensive peptides from frog skin. Eur. J. Biochem. 219, 145-154.   DOI
28 Murdock, C. A., Cleveland, J., Matthews, K. R., and Chikindas, M. L. (2007) The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett. Appl. Microbiol. 44, 255-261.   DOI
29 Naveena, B. M., Muthukumar, M., Sen, A. R., Babji, Y., and Murthy, T. R. K. (2006) Improvement of shelf life of buffalo meat using lactic acid, clove oil and vitamin C during retail display. Meat Sci. 74, 409-415.   DOI
30 Ntzimani, A. G., Giatrakou, V. I., and Savvaidis, I. N. (2010) Combined natural antimicrobials treatments (EDTA, lysozyme, rosemary and oregano oil) on semi cooked chicken meat stored in vacuum packages at 4℃: Microbiological and sensory evaluation. Innov. Food Sci. Emerg. Technol. 11, 187-196.   DOI
31 Okolocha, E. C. and Ellerbroek, L. (2005) The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control 16, 217-225.   DOI
32 Oliveira, T. L. C., Junior B. R. C., Ramos, A. L. S., Ramos, E. M., Piccoli, R. H., and Cristianini, M. (2015) Phenolic carvacrol as a natural additive to improve the preservative effects of high pressure processing of low-sodium sliced vacuumpacked turkey breast ham. LWT-Food Sci. Technol. 64, 1297-1308.   DOI
33 Rico-Munoz, E., Eriotou, E., and Davidson, P. M. (1987) Effect of selected phenolic compounds on the membrane-bound adenosine triphosphate of Staphylococcus aureus. Food Microbiol. 4, 239-249.   DOI
34 Russell, A. D. (1991) Mechanisms of bacterial resistance to nonantibiotics: Food additives and food and pharmaceutical preservatives. J. Appl. Bacteriol. 71, 191-201.   DOI
35 Park, C. B., Lee, J. H., Park, I. Y., Kim, M. S., and Kim, S. C. (1997) Novel antimicrobial peptide from loach, Misgurnus anguillicaudatus. FEMS Lett. 411, 173-178.
36 Pinto, E., Vale-Silva, L., Cavaleiro, C., and Salgueiro, L. (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58, 1454-1462.   DOI
37 Prange, A., Birzele, B., Hormes, J., and Modrow, H. (2005) Investigation of different human pathogenic and food contaminating bacteria and mould grown on selenite/selenate and tellurite/tellurate by X-ray absorption spectroscopy. Food Control 16, 713-728.
38 Settanni, L. and Corsetti, A. (2008) Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138.   DOI
39 Sharma, S. (2015) Food preservatives and their harmful effects. Int. J. Sci. Res. Pub. 5, 1-2.
40 Shi, J., Ross, C. R., Chengappa, M. M., Style, M. J., McVey, D. S., and Blecha, F. (1996) Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline-argininerich neutrophil antimicrobial peptide. Antimicrob. Agents Chemother. 40, 115-121.
41 Singh, A., Sharma, P. K., and Garg, G. (2010) Natural products as preservatives. Int. J. Pharm. Bio Sci. 1, 101-612.
42 Stivarius, M. R., Pohlman, F. W., McElyea, K. S., and Waldroup, A. L. (2002) Effects of hot water and lactic acid treatment of beef trimmings prior to grinding on microbial, instrumental color and sensory properties of ground beef during display. Meat Sci. 60, 327-334.   DOI
43 Wu, S., Patel, K. B., Booth, L. J., Metcalf, J. P., Lin, H. K., and Wu, W. (2010) Protective essential oil attenuates influenza virus infection: an in vitro study in MDCK cells. BMC Complement. Altern. Med. 10, article 69.
44 Tiwari, B. K., Valdramidis, V. P., O'Donnell, C. P., Muthukumarappan, K., Bourke, P., and Cullen, P. J. (2009) Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 57, 5987-6000.   DOI
45 Tossi, A., Sandri, L., Giangaspero, A. (2000) Amphipathic, - helical antimicrobial peptides. Biopolymers 55, 4-30.   DOI
46 Wang, L. L. and Johnson, E. A. (1997) Control of Listeria monocytogenes by monoglycerides in foods. J. Food Prot. 60, 131-138.   DOI
47 Zasloff, M., Martin, B., and Chen, H. C. (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. USA 85, 910-913.   DOI
48 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI
49 Adams, M. (2003) Nisin in multifactorial food preservation, pp. 11-33. In: Roller, S. (ed.), Natural antimicrobials for the minimal processing of foods. CRC Press LLC, Boca Raton, FL.
50 Abd El-khalek, H. H. and Zahran, D. A. (2013) Utilization of fruit by-product in ground meat preservation. Food Sci. Qual. Man. 11, 49-60.
51 Al-Nabulsi, A. A. and Holley, R. A. (2005) Effect of bovine lactoferrin against Carnobacterium viridans. Bioresource Technol. 22, 179-187.
52 Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I., and Koidis, P. (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresources Technol. 99, 5384-5390.   DOI
53 Axelsson, L. T., Chung, T. C., Dobrogosz, W. J., and Lindgren, S. E. (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health D. 2, 131-136.   DOI
54 Badr, H. M. (2005) Elimination of Escherichia coli O157:H7 and Listeria monocytogenes from raw beef sausage by γ-irradiation. Mol. Nutr. Food Res. 49, 343-349.   DOI
55 Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., and Mameri, N. (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloid. 29, 48-56.   DOI
56 Bajpai, V. K., Rahman, A., Dung, N. T., Huh, M. K., and Kang, S. C. (2008) In vitro inhibition of food spoilage and foodbourne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr. J. Food Sci. 73, M314-M320.   DOI
57 Barman, S., Ghosh, R., and Mandal, N. C. (2014) Use of bacteriocin producing Lactococcus lactis subsp. lactis LABW4 to prevent Listeria monocytogenes induced spoilage of meat. Food Nutr. Sci. 5, 2115-2123.   DOI
58 Bhunia, A. K., Johnson, M. C., and Ray, B. (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Microbiol. 65, 261-268.
59 Bashor, M. P., Curtis, P. A., Keener, K. M., Sheldon, B. W., Kathariou, S., and Osborne, J. A. (2004) Effects of carcass washers on Campylobacter contamination in large broiler processing plants. Poultry Sci. 83, 1232-1239.   DOI
60 Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., and Fallik, E. (2003) Controlling gray mould caused by Botytis cinerea in cucumber plants by means of chitosan. Crop Prot. 22, 285-290.   DOI
61 Bibel, D. J., Miller, S. J., Brown, B. E., Pandey, B. B., Elias, P. M., Shinefield, H. M., and Aly, R. (1989) Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J. Invest. Dermatol. 92, 632-638.   DOI
62 Bostan, K. and ’Isin Mahan, F. (2011) Microbiological quality and shelf-life of sausage treated with chitosan. J. Fac. Vet. Med. Istanbul Univ. 37, 117-126.
63 Burrowes, O. J., Hadjicharalambous, C., Diamond, G., and Lee, T. C. (2004) Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food application. J. Food Sci. 69, 66-71.
64 Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250.   DOI
65 Browne, B. A., Geis, P., and Rook, T. (2012) Conventional vs. natural preservatives. HPPI. 2012, 69-73.
66 Brockus, C. W., Jackwood, M. W., and Hamon, B. G. (1998) Characterization of β-defensin prepropeptide mRNA from chicken and turkey bone marrow. Anim. Genet. 29, 283-289.   DOI
67 Cole, A. M., Darouiche, R. O., Legarda, D., Connell, N., and Diamond, G. (2000) Characterization of a fish antimicrobial peptide: gene expression, subcellular localization and spectrum of activity. Antimicrob. Agents Chemother. 44, 2039-2045.   DOI
68 Caminiti, I. M., Noci, F., Muñoz, A., Whyte, P., Morgan, D. J., Cronin, D. A., and Lyng, J. G. (2011) Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem. 124, 1387-1892.   DOI
69 Chouliara, E., Karatapanis, A., Savvaidis, I. N., and Kontominas, M. G. (2007) Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4℃. Food Microbiol. 24, 607-617.   DOI
70 Colak, H., Hampikyan, H., Bingol, E. B., and Aksu, H. (2008) The effect of nisin and bovine lactoferrin on the microbiological quality of Turkish-style meatball (Tekirdag köfte). J. Food Safety 28, 355-375.   DOI
71 Cole, A. M., Weis, P., and Diamond, G. (1997) Isolation and characterization of plurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272, 12008-12013.   DOI
72 Deacon, J. W. (ed.) (1997) Prevention and control of fungal growth. In: Modern Mycology, 3rd Ed., Oxford: Blackwell Science, pp. 289-290.
73 Cowan, M. M. (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564-582.
74 de Martinez, Y. B., Ferrer, K., and Salas, E. M. (2002) Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses. J. Food Prot. 65, 1780-1783.   DOI
75 Dorman, H. J. D. and Deans, S. G. (2000) Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88, 308-316.   DOI
76 de Wit, J. N., and van Hooydonk, A. C. M. (1996) Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth. Milk Dairy J. 50, 227-244.
77 Del Serrone, P., Toniolo, C., and Nicoletti, M. (2015a) Neem (Azadirachta indica A. Juss) oil to tackle enteropathogenic Escherichia coli. BioMed Res. Int. Article ID 343610.
78 Del Serrone, P., Toniolo, C., and Nicoletti, M. (2015b) Neem (Azadirachta indica A. Juss) oil: A natural preservative to control meat spoilage. Foods 4, 3-14.   DOI
79 Driessen, A. J. M., van den Hoov, H. W., Kuiper, W., van der Kamp, M., Sahl, H. G., Konings, R. N. H., and Konings, W. N. (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipids vesicles. Biochem. 34, 1606-1614.   DOI
80 Dua, A., Garg, G., and Mahajan, R. (2013) Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller). Euro. J. Exp. Bio. 3, 203-208.
81 Dufort, V., Stahl, M., and Baysse, C. (2015) The antibacterial properties of isothiocyantes. Microbiol. 161, 229-243.   DOI
82 Food and Drug Administration (2016) Food additive status list. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm Accessed April 8, 2016.
83 EFSA (2006) Opinion of the scientific panel on food additives, flavorings, processing aids and material in contact with food on the safety in use of nisin as a food additive in an additional category of liquid eggs and on the safety of nisin produced using a modified production process as a food additive. EFSA J. 314, 1-8.
84 Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720.   DOI
85 EFSA (2009) Scientific opinion on the use of natamycin (E 235) as a food additive EFSA panel on food additives and nutrient sources added to food (ANS). EFSA J. 1412, 1-25.
86 Fangio, M. F. and Fritz, R. (2014) Potential use of a bacteriocin-like substance in meat and vegetable food biopreservation. Int. Food Res. J. 21, 677-683.
87 Fung, D. Y. C., Taylor, S., and Kahan, J. (1977) Effects of butylated hydroxyanisole (BHA) and butylated hydroxitoluene (BHT) on growth and aflatoxin production of Aspergillus flavus. J. Food Safety 1, 39-51.   DOI
88 Garba, S. and Okeniyi, S. O. (2012) Antimicrobial activities of total alkaloids extracted from some Nigerian medicinal plants. J. Microbiol. Antimicrob. 4, 60-63.
89 Ge, Y. and Yan, H. (2002) Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J. Agric. Food Chem. 50, 685-689.   DOI
90 Gill, C. O. and Badoni, M. (2004) Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. Int. J. Food Microbiol. 91, 43-50.   DOI
91 Gutierrez, J., Rodriguez, G., Barry-Ryan, C., and Bourke, P. (2008) Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: Antimicrobial and sensory screening. J. Food Prot. 71, 1846-1854.   DOI
92 Gogus, U., Bozoglu, F., and Yurdugul, S. (2004) The effects of nisin, oil-wax coating and yogurt on the quality of refrigerated chicken meat. Food Control 15, 537-542.   DOI
93 Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., and von Wright, A. (1998) Characterisation of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46, 3590-3595.   DOI
94 Goncalves, A. C., Almeida, R. C. C., Alves, M. A. O., and Almeida, P. F. (2005) Quantitative investigation on the effects of chemical treatments in reducing Listeria monocytogenes populations on chicken breast meat. Food Control 16, 617-622.   DOI
95 GSFA (1995) General Standard for Food Additives. Codex STAN 192.
96 Hancock, R. E. W. (1997) Peptide antibiotics. Lancet 349, 418-422.   DOI
97 Hintz, T., Matthews, K. K., and Di, R. (2015) The use of plant antimicrobial compounds for food preservation. Biomed Res. Int. Article ID 246264.
98 Ibrahim, H. R., Sugimoto, Y., and Aoki, T. (2000) Ovotranferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim. Biophys. Acta. 1523, 196-205.   DOI
99 Irkin, R. and Esmer, O. K. (2010) Control of Listeria monocytogenes in ground chicken breast meat under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of bay essential oil at 4℃. Food Sci. Technol. Res. 16, 285-290.   DOI
100 Kang, D. H., Koohmaraie, M., Dorsa, W. J., and Siragusa, G. R. (2001a) Development of a multiple-step process for the microbial decontamination of beef trim. J. Food Prot. 64, 63-71.   DOI
101 Isaacs, C. E., Kashyap, S., Heird, W. C., and Thormar, H. (1990) Antiviral and antibacterial lipids in milk and infant formula feeds. Arch. Dis. Child 65, 861-864.   DOI