Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.8.701

Artificial Mutation for Silkworm Molecular Breeding Using Gene Scissors  

Hong, Jeong Won (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Jeong, Chan Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Yu, Jeong Hee (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Kim, Su-Bae (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Kang, Sang Kuk (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Kim, Seong-Wan (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Kim, Nam-Suk (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Kim, Kee Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Park, Jong Woo (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
Publication Information
Journal of Life Science / v.30, no.8, 2020 , pp. 701-707 More about this Journal
Abstract
Gene editing technology using the clustered regularly interspaced short palindromic repeat (CRISPR) and the CRISPR associated protein (Cas)9 has been highly anticipated in developing breeding techniques. In this study, we discuss gene scissors as a tool for silkworm molecular breeding through analysis of Bombyx mori Kynurenine 3-Monooxygenase (BmKMO) gene editing using the CRISPR/Cas9 system and analysis of generational transmission through mutagenesis and selective crossing. The nucleotide sequence of the BmKMO gene was analyzed, and three guide RNAs (gRNAs) were prepared. Each synthesized gRNA was combined with Cas9 protein and then analyzed by T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA and Cas9 complexes were subsequently microinjected into the silkworm embryos; the hatching rate was 18% and the incidence of mutation was 60%. The gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed. In homozygotes generated by self-crossing, a mutant phenotype was observed. These results suggest that silkworm molecular breeding using the CRISPR/Cas9 system is possible and could be an effective way of shortening the time required.
Keywords
Bombyx mori; BmKMO; CRISPR/cas9; gene editing; gRNA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bibikova, M., Golic, M., Golic, K. G. and Carroll, D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169-1175.   DOI
2 Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F. and Marraffini, L. A. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429-7437.   DOI
3 Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J. and Voytas, D. F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761.   DOI
4 Doudna, J. A. and Charpentier, E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.   DOI
5 Harrison, M. M., Jenkins, B. V., O'Connor-Giles, K. M. and Wildonger, J. A. 2014. CRISPR view of development. Genes Dev. 28, 1859-1872.   DOI
6 Joung, J. K. and Sander, J. D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49-55.   DOI
7 Kang, P. D., Lee S. U., Lee, Jung I. Y., Shon, B. H., Kim, Y. S., Kim, K. Y., Kim, M. J., Hong, I. P., Lee, K. G. and Park, K. Y. 2007. Breeding of new silkworm variety golden silk, a yellow cocoon color for spring rearing season. Kor. J. Seric. Sci. 49, 14-17.
8 Kim, S. W., Kang, M. U., Kang, S. W., Youn, E. Y., Choi, K. H., Kim, S. R., Park, S. W. Noh, S. K. and Gu, T. W. 2013. Modification of the commercial silkworm eggs adequate for Bluemoon silkworm transgenesis. Kor. J. Seric. Sci. 51, 73-77.
9 Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W. and Choi, Y. S. 2019. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 39, 521-540.   DOI
10 Kikkawa, H. 1941. Mechanism of pigment formation in Bombyx and Drosophila. Genetics 26, 587-607.   DOI
11 Kistler, K. E., Vosshall, L. B. and Matthews, B. J. 2015. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11, 51-60.   DOI
12 Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284.   DOI
13 Kumari, S. S., Subbarao, S. V., Misra, S. and Murty, U. S. 2011. Screening strains of the mulberry silkworm, Bombyx mori, for thermotolerance. J. Insect Sci. 11, 116.
14 Melgar-Lalanne, G., Hernandez-Alvarez, A. J., Salinas-Castro, A. 2019. Edible insects processing. Trad. Inno. Technol. 18, 1166-1191.
15 Naito, Y., Hino, K., Bono, H. and Ui-Tei, K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120-1123.   DOI
16 Taning, C. N. T., Van Eynde, B., Yu, N., Ma, S. and Smagghe, G. 2017. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 98, 245-257.   DOI
17 Zhu, L., Mon, H., Xu, J., Lee, J. M. and Kusakabe, T. 2015. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci. Rep. 5, 18103.   DOI
18 Xu, H. and O'Brochta, D. A. 2015. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc. Biol. Sci. 282, 1810.
19 Zhang, Z., Aslam, A. F., Liu, X., Li, M., Huang, Y. and Tan, A. 2015. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. J. Insect Physiol. 79, 73-79.   DOI
20 Zhao, Y., Dai, Z., Liang, Y., Yin, M., Ma, K., He, M., Ouyang, H. and Teng, C. B. 2014. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 4, 3943.   DOI
21 Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N. and Chesnut, J. D. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44-53.   DOI