• 제목/요약/키워드: Artificial Intelligence Technology(AI)

검색결과 1,018건 처리시간 0.022초

보건의료분야에서의 인공지능기술(AI) 사용 의도와 태도에 관한 연구 (Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare)

  • 김장묵
    • 융합정보논문지
    • /
    • 제7권4호
    • /
    • pp.53-60
    • /
    • 2017
  • 본 연구는 UTAUT 모델을 이용하여 보건의료분야 대학생들의 인공지능기술(Artificial Intelligence Technology, AI)의 사용 의도와 태도에 영향을 미치는 요인들을 규명하기 위해 시행되었다. 연구대상은 278명의 대학생으로, 2016년 5월 15일부터 6월 14일까지 자기기입식 설문지를 통하여 자료를 수집하였다. 연구결과 성과기대, 사회적 영향, 업무의 유용성, 불안요인이 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 그리고 성과기대, 업무의 유용성, 불안요인은 태도에 유의미한 영향을 미치는 것으로 나타났으며, 사용 의도는 태도에 영향을 미치는 것으로 나타났다. 불안요인과 업무의 유용성이 태도에 미치는 직접 효과가 사용 의도에 의해 부분 매개하는 것으로 나타났다. 대학생들의 AI 기술에 대한 긍정적인 사용 의도와 태도를 높이기 위해서는 사실에 근거한 정확한 정보전달과 막연한 불안감을 줄이면서 성과기대, 사회적 영향, 인지된 유용성을 향상시키는 것이 중요한 것으로 나타났다.

Using No-Code/Low-Code Solutions to Promote Artificial Intelligence Adoption in Vietnamese Businesses

  • Quoc Cuong Nguyen;Hoang Tuan Nguyen;Jaesang Cha
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.370-378
    • /
    • 2024
  • Recently, Artificial Intelligence (AI) has been emerging as a technology that has transformed and revolutionized various industries around the world. In recent years, businesses in Vietnam have also started to embrace AI applications to enhance their operations and gain a competitive edge in the market. As AI technologies continue to evolve rapidly, their impact on Vietnamese businesses is becoming increasingly profound. As artificial intelligence continues to progress across various fields, the need to democratize AI technology becomes increasingly clear. In a rapidly growing market like Vietnam, leveraging AI offers significant opportunities for businesses to improve operational efficiency, customer engagement, and overall competitiveness. However, significant barriers to AI adoption in Vietnam are the scarcity of skilled developers and the high cost of implementing traditional AI. No-code/low-code platforms offer an innovative solution that can accelerate AI adoption by making these technologies accessible to a wider audience. This article analyzes and understands the benefits of no-code/low-code solutions and proposes a roadmap for implementing no-code/low-code solutions in promoting AI applications in Vietnamese businesses.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP

  • Park, Ji Hun;Jo, Hye Seon;Lee, Sang Hyun;Oh, Sang Won;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1271-1287
    • /
    • 2022
  • When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends of many variables to perform diagnostic tasks and implement mitigation actions rapidly. However, the probability of human error increases owing to the characteristics of the diagnostic tasks performed by the operator. Researches regarding diagnostic tasks based on Artificial Intelligence (AI) have been conducted recently to reduce the likelihood of human errors; however, reliability issues due to the black box characteristics of AI have been pointed out. Hence, the application of eXplainable Artificial Intelligence (XAI), which can provide AI diagnostic evidence for operators, is considered. In conclusion, the XAI to solve the reliability problem of AI is included in the AI-based diagnostic algorithm. A reliable intelligent diagnostic assistant based on a merged diagnostic algorithm, in the form of an operator support system, is developed, and includes an interface to efficiently inform operators.

토픽모델링을 활용한 인공지능 연구동향 분석 (Analysis of artificial intelligence research trends using topic modeling)

  • 최대수
    • 융합보안논문지
    • /
    • 제22권5호
    • /
    • pp.61-67
    • /
    • 2022
  • 본 연구의 목적은 인공지능의 연구동향을 분석하는 것이다. 입체적인 분석을 위하여 인공지능에 대한 사회과학에서의 연구방향과 공학에서의 연구방향의 차이를 객관적으로 비교하여 제시하고자 시도하였다. 연구방법은 빅데이터 분석방법론 중에서 토픽모델링을 활용하였으며, 분석데이터는 학술연구정보시스템에서 인공지능(AI)라는 키워드로 검색된1000개의 영문 논문을 활용하였다. 분석결과 사회과학분야에서는 인공지능에 대하여 '인간', '영향', '미래'라는 키워드를 중심으로 형성된 그룹을 확인할 수 있었고, 공학분야에서는 '인공지능 기반의 기술개발', '시스템', '위험-보안' 등의 그룹이 형성되었다.

인공지능 리터러시 신장을 위한 인공지능 사고 기반 교육 프로그램 개발 및 효과 (Development and Effectiveness of an AI Thinking-based Education Program for Enhancing AI Literacy)

  • 이주영;원용호;신윤희
    • 공학교육연구
    • /
    • 제26권3호
    • /
    • pp.12-19
    • /
    • 2023
  • The purpose of this study is to develop the Artificial Intelligence thinking-based education program for improving AI literacy and verify its effectiveness for beginner. This program consists of 17 sessions, was designed according to the "ABCDE" model and is a project-based program. This program was conducted on 51 first-year middle school students and 36 respondents excluding missing values were analyzed in R language. The effect of this program on ethics, understanding, social competency, execution plan, data literacy, and problem solving of AI literacy is statistically significant and has very large practical significance. According to the result of this study, this program provided learners experiencing Artificial Intelligence education for the first time with Artificial Intelligence concepts and principles, collection and analysis of information, and problem-solving processes through application in real life, and served as an opportunity to enhance AI literacy. In addition, education program to enhance AI literacy should be designed based on AI thinking.

IoT 기반 중학교 SW·AI 교육 콘텐츠 개발에 관한 연구 -교육과정과의 연계- (A study on the development of IoT-based middle school SW·AI education contents -Connection with Curriculum-)

  • 한정수;이근호
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.21-26
    • /
    • 2022
  • 본 연구는 생의 기초를 형성하는 중학생을 대상으로 SW·AI 교육프로그램을 구성하여 이를 보급함으로써 중학생들의 SW·AI 기초역량 함양을 제고하고자 한다. 더불어 정규교육과정과의 연계에 의한 SW·AI 교육프로그램을 계획함으로써 2025년부터 시행되는 SW·AI 교육의 공교육화에 초석이 되고자 한다. 이를 위해 먼저 중학교에서의 SW·AI의 개념을 정의하고 소프트웨어/인공지능 학습요인을 정규교육과정과 연계하는 방안을 제시하여 이를 토대로 중학생을 위한 SW·AI 교육프로그램을 작성하였다. 문헌 연구를 토대로 인공지능 기술의 이해, 데이터의 가치 및 실생활에서의 인공지능 기술 활용을 SW·AI 교육내용으로 설정하고, 이를 현행되고 있는 중학교 교과목의 단원별 차원과 SW·AI 교육내용과 연계하여 교육프로그램을 구성하였다. 모든 SW·AI 교육은 참여자 중심으로 수업이 이루어질 수 있도록 이론보다는 실습위주의 형태로 구성되었으며 과정 이수 후에는 인공지능 기술 이해를 바탕으로 실생활에 인공지능기술을 활용할 수 있는 역량을 함양하는 것을 목적으로 하였다.

AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰 (Artificial Intelligence Based Medical Imaging: An Overview)

  • 홍준용;박상현;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권3호
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

비전공자를 위한 AI기초통계 교육의 고찰 (A Study on AI basic statistics Education for Non-majors)

  • 유진아
    • 통합자연과학논문집
    • /
    • 제14권4호
    • /
    • pp.176-182
    • /
    • 2021
  • We live in the age of artificial intelligence, and big data and artificial intelligence education are no longer just for majors, but are required to be able to handle non-majors as well. Software and artificial intelligence education for non-majors is not just a general education, it creates talents who can understand and utilize them, and the quality of education is increasingly important. Through such education, we can nurture creative talents who can create and use new values by fusion with various fields of computing technology. Since 2015, many universities have been implementing software-oriented colleges and AI-oriented colleges to foster software-oriented human resources. However, it is not easy to provide AI basic statistics education of big data analysis deception to non-majors. Therefore, we would like to present a big data education model for non-majors in big data analysis so that big data analysis can be directly applied.

Criteria for implementing artificial intelligence systems in reproductive medicine

  • Enric Guell
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제51권1호
    • /
    • pp.1-12
    • /
    • 2024
  • This review article discusses the integration of artificial intelligence (AI) in assisted reproductive technology and provides key concepts to consider when introducing AI systems into reproductive medicine practices. The article highlights the various applications of AI in reproductive medicine and discusses whether to use commercial or in-house AI systems. This review also provides criteria for implementing new AI systems in the laboratory and discusses the factors that should be considered when introducing AI in the laboratory, including the user interface, scalability, training, support, follow-up, cost, ethics, and data quality. The article emphasises the importance of ethical considerations, data quality, and continuous algorithm updates to ensure the accuracy and safety of AI systems.

특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로 (Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling)

  • 이현상;차오신;신선영;김규리;오세환
    • 정보화정책
    • /
    • 제29권4호
    • /
    • pp.43-66
    • /
    • 2022
  • 인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.