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Introduction 

Artificial intelligence (AI) algorithms have become ubiquitous in 
our lives, and the field of assisted reproductive technology (ART) is 
no exception. In recent years, increasingly many publications in sci-
entific journals and conferences have highlighted the various appli-
cations of AI in reproductive medicine [1,2]. These applications span 
a wide range of areas within the field of reproductive medicine [3-5]. 
As embryologists, as well as physicians, we have the duty to keep 
abreast of the existing technologies, and above all, their function 
and results, before accepting the incorporation of any new tool in 
clinical practice. The present work aims to provide key concepts to be 
taken into consideration when considering integrating AI systems 
into reproductive medicine practices. 
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Artificial intelligence in assisted reproductive 
technology 

Among the numerous published algorithms, we can find predic-
tive models for embryo transfer outcomes on day 2/3 [6] and blasto-
cyst stage [7,8], sperm selection by image recognition correlated 
with fertilization and blastocyst formation [9], prediction of obtain-
ing spermatozoa from testicular biopsies [10], non-invasive oocyte 
scoring on two-dimensional images [11], cytoplasmic recognition of 
the zygote [12], morphokinetic automated annotation of the em-
bryo [13-15], automated blastocyst quality assessment [16], embryo 
implantation potential via morphokinetic biomarkers [17], euploidy 
prediction using metabolic footprint analysis [18], ranking for em-
bryo selection [19-25], blastocoel collapse and its relationship with 
degeneration and aneuploidy [26], morphokinetics and clinical fea-
tures for the prediction of euploidy [27], prediction of aneuploidy or 
mosaicism using only patients’ clinical characteristics [28], tracking of 
menstrual cycles and prediction of the fertile window [29], control of 
culture conditions and quality control of embryologist performance 
[25,30], intrauterine insemination success [31], computer decision 
support for ovarian stimulation [32], prediction for the day of trigger-
ing [33,34], and follicle-stimulating hormone dosage prediction for 
ovarian stimulation [35]. All the mentioned references are depicted in 



Figure 1. Machine learning models are listed in Table 1 [6,7,10,17,18,27-
29,31-37], while those corresponding to the deep learning subset 
can be found in Table 2 [8,9,11-16,19-24,26,38-43]. In these tables, 
the AI models are described with their sample size, results and lim-
itations. The main limitation of all studies was their retrospective na-
ture. A limited sample size, imbalanced dataset, and lack of multi- 
center evaluation were also common limitations found in the litera-
ture review. 

Commercial platforms or in-house algorithms 

The AI systems used in in vitro fertilization (IVF) clinics can be cate-
gorised into two types: commercial products and self-developed in-
house solutions. While cloud-based systems can offer advantages for 
IVF clinics with lower workloads, such as leveraging data from other 
clinics, they may face challenges in maintaining predictive accuracy 
due to interference from individual clinic protocols or conditions. 
Notable examples of cloud-based products include Embryo Ranking 
Intelligent Classification Algorithm (ERICA) [19], intelligent Data 
Analysis Score (iDAScore) [23], and Life Whisperer [20]. 

In contrast, adopting an in-house approach could offer certain ad-
vantages, such as greater control and customisation over the AI sys-
tem and its workflow as well as the possibility to test own ideas with-

out having to wait for commercial releases. Single-center studies 
such as Zeadna et al. [10] or De Gheselle et al. [27] represent this ap-
proach to AI in IVF. 

Requirements for implementing new AI systems 
in the laboratory 

Prior to introducing a new AI system—or any other technique—it 
is essential to ensure that it satisfies certain criteria in a laboratory 
setting. At least one of the following criteria should be met for the 
new technique to be considered suitable: the candidate AI system 
should have the ability to improve results, such as the live birth (LB) 
rate, time to pregnancy, or any other key performance indicator. If 
the results are not worsened, other criteria to be met could include 
making work easier and more efficient, saving time and resources, 
offering greater safety through an improved error detection, or pro-
viding better explainability. 

Factors to consider when introducing AI in the 
laboratory 

There are several factors that cannot be overlooked when consid-
ering the integration of a new system into the laboratory. These fac-

Figure 1. The main AI algorithms published ordered by sample size (log scale) and the performance metric given by the authors (area under 
the curve [AUC] or accuracy), grouped by type of machine learning (ML) algorithm (shape) and target (colour). The AUC values, inherently 
bounded within the range from 0 to 1, have been converted to percentages by multiplying them by 100 in this graph for enhanced 
interpretability. DL, deep learning; IUI, intrauterine insemination; IVF, in vitro fertilization; LB, live birth.
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Table 1. Artificial intelligence models for assisted reproduction techniques 

Study Target
No. of  

features  
input

Dataset Type of input Results Limitations

Uyar et al. (2015) 
[6]

IVF outcomes  
(implantation)

11 2,453 Patient metadata and embryo 
morphological characteris-
tics

Accuracy = 80.4%; 
Sensitivity = 63.7%

Retrospective study, embryo transfers 
performed at cleavage stage (D+2/3), 
manual assessment, imbalanced 
dataset, LB not used as an endpoint, 
lack of multi-center evaluation.

Blank et al. (2019) 
[7]

IVF outcomes  
(implantation)

32 1,052 Patient metadata AUC = 0.74; Sensitivi-
ty = 0.84; Specifici-
ty = 0.58

Retrospective study, limited sample 
size, lack of external validation, bal-
anced training set but imbalanced 
testing set, LB not used as an end-
point.

Goyal et al. (2020) 
[37]

IVF outcomes 
(LB)

25 141,160 Patient metadata AUC = 0.846; Re-
call = 76%; Preci-
sion = 77%

Retrospective study, imbalanced data-
set adjusted by downsampling, limit-
ed generalizability due to specific 
population data, limited factors in the 
dataset.

Ortiz et al. (2022) 
[28]

IVF cycle  
outcomes  
(mosaicism/ 
aneuploidy)

29 6,989 Patient metadata classified 
into six groups: general,  
maternal, paternal, couple- 
related, IVF cycle-related, 
and embryo-related

AUC_aneuploi-
dy = 0.792; AUC_
mosaicism = 0.776

Retrospective study, biased dataset as 
only PGT-A embryos included, imbal-
anced dataset, lack of external valida-
tion.

Zeadna et al. 
(2020) [10]

Sperm prediction 
in azoospermia

14 119 Patient metadata (hormonal 
levels, age, body mass index, 
histopathology, varicocele, 
etc.)

AUC = 0.807 Retrospective study, limited generaliz-
ability due to population heterogene-
ity of non-obstructive azoospermia 
patients, limited sample size, only 
TESE used, imbalanced dataset, lack 
of multi-center evaluation.

Guell Penas et al. 
(2022) [36]

Mislabelling  
potential effect 
in LB prediction

4 343 Morphokinetic parameters AUC_aneuploid =  
0.74; AUC_KIDn =  
0.59

Retrospective study, PGT-A on D+3, no 
mosaicism considered, limited sam-
ple size, lack of multi-center evalua-
tion, manually kinetic parameters.

Yang et al. (2019) 
[17]

Embryo viability 
(implantation, 
LB)

5 367 Morphokinetic parameters AUC_implantation 
= 0.69; AUC_live 
birth = 0.64

Conventional IVF and ICSI embryo mor-
phokinetic parameters merged with-
out adjusting t0 for conventional IVF 
sperm lagging or using intervals, im-
balanced dataset, limited sample size, 
lack of multi-center evaluation, po-
tential mislabelled embryos in 
non-implanted group, retrospective 
study.

Liang et al. (2019) 
[18]

Embryo ploidy 
status

1 123 embryos 
(1,107 Raman 
spectra)

Raman spectra Accuracy = 95.9% Retrospective study, limited sample 
size, LB not used as an endpoint, lack 
of multi-center evaluation.

De Gheselle et al. 
(2022) [27]

Embryo ploidy 
status

85 539 Morphokinetic parameters, 
standard development fea-
tures and patient metadata

AUC = 0.75;  
Accuracy = 71%

Retrospective study, limited sample 
size, LB not used as an endpoint, lack 
of multi-center evaluation.

Yu et al. (2022) 
[29]

Fertile window 2 382 Basal body temperature and 
heart rate

AUC = 0.899;  
Accuracy = 87.5%, 
Sensitivity = 69.3%; 
Specificity = 92%

Retrospective study, lower predictions 
for irregular menstruators 
(AUC = 0.725), lack of multi-center 
evaluation.

Khodabandelu et 
al. (2022) [31]

IUI success 8 546 Patient metadata, sperm  
sample data, antral follicle 
counting

Gmean, AUC, Brier 
values of 0.80, 0.89, 
and 0.129,  
respectively

Retrospective study, imbalanced data-
set, lack of multi-center evaluation.

(Continued to the next page)
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tors must be carefully evaluated before making a decision. When in-
troducing an AI system, the following factors must be taken into ac-
count: 

1. User interface 
The user interface (the visual display on the screen) should be easy 

to understand and navigate. 

2. Scalability 
The system should be capable of adapting to the laboratory's 

needs, including the volume of data and users, as well as being inte-
grated into the laboratory's workflow and protocols. If the AI plat-
form cannot be adapted to the laboratory’s existing workflow, it is 
necessary to evaluate the impact of adapting the lab workflow and 
the potential benefit of using that AI platform. 

3. Training 
The manufacturer should offer information regarding the required 

training for users and how it will be delivered.  

4. Support  
The manufacturer should specify the type of technical support of-

fered, who will be responsible in case of failure, and what the re-
sponse time will be. 

5. Follow-up 
As AI systems continuously learn, it is crucial to ensure that the al-

gorithms are updated to accommodate new data. The manufacturer 
should provide information about the maintenance and monitoring 
plan to ensure that the system continues to provide accurate and 
unbiased results. 

6. Cost 
The cost of a system should be considered in relation to the cen-

ter’s budget and investment capacity. 

7. Ethics 
To ensure that an AI system is ethically sound, it is important to 

evaluate its impact on patient care and outcomes. The system should 
not only improve patient outcomes but also avoid any harm or neg-

Study Target
No. of  

features  
input

Dataset Type of input Results Limitations

Letterie et al. 
(2020) [32]

Ovarian stimula-
tion day-to-day 
decision-mak-
ing tool

4 3,159 Stimulation control data  
(oestradiol level, follicle  
measurement, cycle day and 
recombinant FSH dose)

Accuracy_continue 
= 0.92; Accuracy_
trigger = 0.96;  
Accuracy_dosage 
= 0.82; Accuracy_
days = 0.87

Retrospective study, lack of multi-cen-
ter evaluation, manual assessment of 
ultrasound observations, imbalanced 
dataset.

Hariton et al. 
(2021) [33]

Ovarian stimula-
tion trigger de-
cision-making 
tool

12 7,866 Number of follicles 16–20 mm 
in diameter, the number of 
follicles 11–15 mm in  
diameter, and oestradiol  
level, age, body mass Index, 
protocol type

Average outcome im-
provement in  
total 2PNs and  
usable blastocysts 
compared with the 
physician's decision

Retrospective study, long period ( > 10 
years).

Fanton et al. 
(2022) [34]

Gonadotrophin 
starting dose

4 18,591 Age, body mass index,  
anti-Müllerian hormone,  
antral follicle count

Mean absolute error 
of 3.79 MII; r2 for MII 
prediction 
= 0.45

Retrospective study, model based on 
U.S. population, dismissed confound-
ing factors such as dose adjustments 
and timing of trigger, exclusion of cy-
cles with missing data.

Correa et al. 
(2022) [35]

Ovarian stimula-
tion first FSH 
dosage

5 3,487 Age, body mass index,  
anti-Müllerian hormone,  
antral follicle count, previous 
LB

Model's score  
approaches best 
possible dose more 
times than clinicians.

Retrospective study, tendency of the 
model to overdose some patients due 
to underrepresentation of hyper-re-
sponder, limited generalizability due 
to specific population data, lack of 
multi-center evaluation.

The main limitations, results, and sample size are presented in this table.
IVF, in vitro fertilization; LB, live birth; AUC, area under the curve; PGT-A, preimplantational genetic testing for aneuploidy; TESE, testicular sperm extraction; 
KIDn, negative known implantation embryos (non-implanted embryos); ICSI, intracytoplasmic sperm injection; FSH, follicle-stimulating hormone; IUI, intra-
uterine insemination; PN, pronucleate; MII, metaphase II oocyte.

Table 1. Continued
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Table 2. Deep learning models for assisted reproduction techniques 

Study Target Dataset Type of input Results Limitations
Mendizabal-Ruiz 

et al. (2022) [9]
Sperm selection (fertiliza-

tion and blastocyst for-
mation)

383 Video Software’s scores related with 
fertilization (p = 0.004) and 
blastocyst formation (p = 0.013)

Retrospective study, limited sample size, lack 
of standardized protocols for imaging, lack 
of multi-center evaluation.

Nayot et al. (2021) 
[11]

Oocyte quality and blas-
tocyst development

16,373 Single image SRs related with blastocyst  
rate: (0–2.5) = 16%; (2.6–5) 
= 36.9%; (5.1–7.5) = 44.2%; 
(7.6–10) = 53.4%

Retrospective study, male factor was not tak-
en into consideration, lack of standardized 
protocols for imaging, limited generalizabil-
ity due to specific population data, LB not 
used as an endpoint.

Zhao et al. (2021) 
[12]

Cytoplasmic zygote rec-
ognition

8,877 Single image AUC = 0.874 Retrospective study, limited sample size, re-
quirement of high-quality images and stan-
dardization protocols for imaging, lack of 
external validation.

Kan-Tor et al. 
(2020) [13]

Morphokinetic automat-
ed annotation (blasto-
cyst, implantation)

6,200  
blastocyst, 
5,500  
implantation

Video AUC_blastocyst = 0.83; AUC_im-
plantation = 0.71

Retrospective study, not enough information 
about imbalancing assessment, LB not used 
as an endpoint, potential mislabelled em-
bryos in non-implanted group.

Feyeux et al. 
(2020) [14]

Morphokinetic automat-
ed annotation

701 Video Manual vs. automated annota-
tion concordance, r2 = 0.92

Retrospective study, lack of multi-center eval-
uation, only one focal plane.

Lucio et al. (2022) 
[15]

Morphokinetic automat-
ed annotation (ploidy, 
implantation)

448 Video Concordance correlation  
coefficient ranging from 
tPNf = 0.813 to tSB = 0.947; 
AUC_plastocyst = 0.814; AUC_
ploidy = 0.644

Retrospective study, imbalanced dataset, LB 
not used as an endpoint, mosaic score not 
significantly predictive, potential misla-
belled embryos in non-implanted group.

Khosravi et al. 
(2018) [16]

Blastocyst quality 10,148 Single image AUC = 0.98; accuracy = 96.94%; 
IR Good-Morph and < 37 
years = 66.3%; IR Poor-Morph 
and ≥ 41 years = 13.8%

Retrospective study, lack of external valida-
tion, possibly limited sample size, LB not 
used as an endpoint.

Liao et al. (2021) 
[8]

Blastocyst stage and 
quality

10,432 Video AUC = 0.82; accuracy = 78.2% Retrospective study, lack of multi-center eval-
uation, clinical characteristics not taken into 
account, only one focal plane of 3D embry-
os, LB not used as an endpoint.

VerMilyea et al. 
(2020) [42]

Embryo viability (blasto-
cyst, implantation)

8,886 Single image Accuracy = 64.3%;  
sensitivity = 70.1%; specificity 
= 60.5%; AI improvement vs. 
embryologists’ accuracy 
= 24.7%

Retrospective study, model only trained on 
day 5 transferred embryos, LB not used as 
an endpoint, funded by commercial com-
panies, potential mislabelled embryos in 
non-implanted group.

Tran et al. (2019) 
[41]

Embryo viability (implan-
tation)

10,638 Video AUC = 0.93 Retrospective study, imbalanced dataset, ar-
rested embryos included, random predic-
tion for not arrested embryos, limited sam-
ple size, LB not used as an endpoint, funded 
by commercial companies, potential misla-
belled embryos in non-implanted group.

Diakiw et al. 
(2022) [21]

Embryo viability (implan-
tation)

9,359 Single image AUC = 0.61; accuracy = 61.8% Retrospective study, use of simulated cohort 
ranking analyses, LB not used as an end-
point.

Berntsen et al. 
(2022) [23]

Embryo viability (implan-
tation)

17,249 Video AUC_implantation = 0.67; AUC_
all = 0.95

Retrospective study, imbalanced dataset, LB 
not used as an endpoint, funded by com-
mercial companies, potential mislabelled 
embryos in non-implanted group.

Loewke et al. 
(2022) [40]

Embryo viability (implan-
tation)

5,923 Single image AUC = 0.74. Score difference of 
> 0.1 related to higher  
pregnancy rates.

Retrospective study, limited sample size, lack 
of standardized protocols for imaging.

(Continued to the next page)
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Study Target Dataset Type of input Results Limitations
Theilgaard Lassen 

et al. (2023) [24]
Embryo viability (implan-

tation)
181,428 Video AUC_blind = 0.68; AUC_

D+5 = 0.707; AUC_
D+3 = 0.621; AUC_
D+2 = 0.669; AUC_all = 0.954

Retrospective study, imbalanced dataset, up-
sampling may increase sample bias, AUC_
all included arrested embryos, funded by 
commercial companies, potential misla-
belled embryos in non-implanted group.

Miyagi et al. 
(2019) [38]

Embryo viability (LB) 5,691 Single image Comparison AI vs. conventional 
embryo evaluation: 0.64/0.61, 
0.71/0.70, 0.78/0.77, 0.81/0.83, 
0.88/0.94, and 0.72/0.74 for the 
age categories < 35, 35–37, 
38–39, 40–41, and ≥ 42 years 
and all ages, respectively.

Retrospective study, imbalanced dataset, lim-
ited sample size, lack of standardized proto-
cols for imaging, lack of multi-center evalu-
ation, potential mislabelled embryos in 
non-implanted group.

Cimadomo et al. 
(2023) [43]

Embryo viability (implan-
tation, LB)

3,604 Video AUC_euploid = 0.6; AUC_
LB = 0.66

Retrospective study, imbalanced dataset, po-
tential mislabelled embryos in non-implant-
ed group.

Diakiw et al. 
(2022) [20]

Embryo ploidy status 5,050 Video Accuracy = 65.3%; sensitivity 
= 74.6%; Accuracy_cleanse-
da) = 77.4%

Retrospective study, LB not used as an end-
point, lack of standardized protocols for im-
aging, possibly limited sample size.

Huang et al. 
(2021) [39]

Embryo ploidy status 1,803 Patient meta-
data and 
video

AUC = 0.8 Retrospective study, limited sample size, im-
balanced dataset, manually kinetic parame-
ters, lack of multi-center evaluation, model 
based only on PGT-A patients, LB not used 
as an endpoint.

Chavez-Badiola et 
al. (2020) [19]

Embryo ploidy status and 
viability (implantation)

840 Single image Accuracy = 70%; PPV = 79%, 
NPV = 66%. Higher ranking 
metric (NDCGs) than random 
selection

Retrospective study, imbalanced dataset, lack 
of multi-center evaluation, limited sample 
size, LB not used as an endpoint, potential 
mislabelled embryos in non-implanted 
group.

Barnes et al. 
(2023) [22]

Embryo ploidy status 10,378 Patient meta-
data, video, 
morphoki-
netics, em-
bryo grading

AUC = 0.737, accuracy = 65.7%, 
aneuploid predictive val-
ue = 82.3%

Retrospective study, biased dataset as only 
PGT-A embryos included, lack of standard-
ized protocols for imaging, manually anno-
tated morphokinetics and morphological 
assessments, differences in mosaic report-
ing across different genetic laboratories, 
mosaicism was not considered during mod-
el development, LB not used as an end-
point.

Cimadomo et al. 
(2022) [26]

Blastocoel collapse and 
its relationship with de-
generation and aneu-
ploidy

2,348 Video Degeneration and aneuploidy 
rates directly related to number 
of collapses.

Retrospective study, limited sample size, mo-
saicism could not be reliably assessed, no 
differences in LBR.

The main limitations, results, and sample size are presented in this table.
SR, score range; LB, live birth; AUC, area under the curve; tPNf, time of pronuclear fading; tSB, time of starting blastulation; IR, implantation rate; 3D, three-di-
mensional; AI, artificial intelligence; PGT-A, preimplantational genetic testing for aneuploidy; PPV, positive predictive value; NPV, negative predictive value; 
NDCG, normalised discontinued cumulative gain.
a)Cleansed, refers to a data pre-processing technique aiming to reduce noisy labels.

ative impact on the patient. Moreover, the manufacturer should 
have measures in place to ensure the confidentiality and security of 
patient data, such as the ISO 27002-2021 and IEC 62304 standards. 
The most important ethical issue is the lack of randomised controlled 
trials. It is premature to implement a technology in the clinical set-
ting before the trial results are made available [44]. The nature of the 
mathematical algorithms performed during the AI process leads to a 

spectrum of transparency, ranging from the most interpretable 
models, such as linear regression-based algorithms, to the most 
cryptic models, also called black-box, such as neural networks. It is 
important to know the risks, side effects, benefits and the confidence 
of each clinical decision before delegating the decision-making pro-
cess to machines. While transparent models enhance clinical deci-
sion-making, black-box systems replace human decisions, leading to 

Table 2. Continued
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uncertainty about the responsibility for treatment success. Black-box 
algorithms could build predictive models biased by cofounders, and 
the error-checking processes of each prediction could go unnoticed 
by human operators [44]. Moreover, opaque models could increase 
the risk of imbalanced outcomes. For instance, if there exists a cor-
relation between embryo quality assessed by AI and gender, there 
could be an intrinsic imbalance that could take more time to detect 
than in interpretable models. 

8. Data quality 
The quality of data refers to the data’s accuracy, completeness, 

timeliness, relevance, consistency, and reliability. It is crucial for an AI 
system to have access to high-quality data to provide accurate and 
reliable results. If the data used for building the model are not reliable 
and generalisable, then the AI model will fail when applied to new 
data in the near future. Some models are based on a concrete and 
certain population, and if data across populations are not as homo-
geneous, then the model will not be accurate enough. Furthermore, 
in embryology, confounding factors such as age should not be used 
as predictors in embryo quality models if it is desired to develop an 
embryo quality model instead of an age-based predictive model [44], 
as the AI algorithm could base its prediction mostly on data included 
in the age variable with no importance for embryonic features.  

9. Performance  
Performance refers to the effectiveness and efficiency of an AI sys-

tem in achieving its intended objectives, such as accuracy, speed, 
and reliability. The system's performance should be evaluated based 
on relevant metrics and benchmarks to ensure that it meets the de-
sired standards. 

Data annotation 

The source of data is crucial in data annotation. The origin of data 
can vary (tabular, images, videos, audio, the outcome of a previous AI 
algorithm, etc.), and the annotation of data is expected to be more 
effective when automated, since automation removes the subjectivi-
ty of human-annotated parameters. However, the effectiveness of 
automated versus manual annotation depends on the degree of in-
tra-individual and inter-individual variability for the target variable 
when annotated by humans and the reliability of the automatic an-
notation methods [45,46]. Features with higher variability or lower 
reliability can lead to lower performance of predictive models, since 
AI may use different values for data that are actually equivalent. In-
cluding such features in the models can introduce noise or inconsis-
tencies, affecting the accuracy of predictions and the model’s overall 
performance. Determining whether manual or automated annota-

tion is more suitable depends on each specific case. Factors such as 
data complexity, available resources, and the desired level of accura-
cy need to be considered. Manual annotation can provide more ac-
curate and reliable results, but can be time-consuming and intro-
duce human biases. Automated annotation methods can be more 
efficient and scalable, but may be less accurate or reliable, especially 
in cases with noisy data or lack of proper validation. 

It is not always possible for all values in a database to be filled. Not 
available (NA) values represent a problem when building AI algo-
rithms and require proper handling. Several options exist for manag-
ing missing values. Some common approaches include discarding 
observations with NA values, imputing missing values using meth-
ods such as mean or median imputation, or utilising other AI algo-
rithms such as k-nearest neighbour for imputation, as well as directly 
excluding the feature with NA values. 

Machine learning techniques are also sensitive to data points that 
deviate significantly from the majority of the data (outliers). Manag-
ing outliers involves deciding whether to integrate them into the 
analysis or discard them. 

Therefore, careful consideration is required when dealing with NA 
values and outliers. The choice of appropriate strategies for manag-
ing them depends on the specific context, the nature of the data, 
and the objectives of the analysis. 

Risk factors affecting data quality in model design 

Each predictive model has its unique characteristics and objec-
tives, and is based on a specific experimental design that includes 
certain factors as inclusion and exclusion criteria. It is crucial to care-
fully review the experimental design, as there could be potential 
risks that may affect the quality of data used in the model. One such 
risk would be the possibility of data bias due to the inclusion criteria, 
which could compromise the generalisability of the results, particu-
larly if there were confounding factors affecting predictive variables 
[47,48]. Three additional pitfalls to consider, as described by Curchoe 
et al. [49], are small sample sizes, imbalanced datasets, and limited 
performance metrics. 

Furthermore, in classification cases, there could exist a risk of mis-
labelling in the output variable. Mislabelling occurs when the cate-
gorical variable has incorrect labels for some of the data points. It is 
important to be aware of this risk, as the inclusion of mislabelled 
data decreases accuracy [50,51]. A potential example of mislabelling 
in embryology is evident in two embryo selection models with dif-
ferent labels for classification. One model compares implanted or LB 
embryos versus non-implanted or non-live birth (NLB) embryos [38], 
while the other compares euploid versus aneuploid embryos [39]. In 
the LB versus NLB comparison, it is important to carefully consider 
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the potential for mislabelling, as high-potential embryos with a neg-
ative outcome due to reasons unrelated to the embryo could be in-
correctly labelled as NLB, which may negatively impact the perfor-
mance of machine learning and deep learning algorithms [36,40,52]. 
Additionally, in ploidy models, undetected mosaicism [53] can also 
lead to mislabelling. Moreover, the "Schrödinger embryo" paradox 
makes it impossible to assess the genetic status of the inner cell 
mass and trophectoderm until the whole embryo has been donated 
for research. Once an embryo has been donated, it becomes impos-
sible for it to achieve LB, and its real potential for viability will remain 
unrealised. Besides, the algorithms’ performance may be distorted 
depending on the inclusion criteria in each experimental design. 
There is a risk of including embryos with low viability potential, 
those that have not yet been transferred, or even euploid embryos 
that were not cryopreserved due to low quality [54]. Specifically, 
Tran et al. [41] reported that the area under the curve (AUC) could be 
inflated by including many arrested embryos in the sample used to 
compute it. That predictive model could be considered proper for 
justifying automation for the quality assessment of arrested embry-
os, although random choice was supposed to be used for non-ar-
rested embryos [55]. 

Machine and deep learning modelling 

Machine and deep learning modelling refer to the process of cre-
ating and training mathematical models that can automatically 
identify patterns and make predictions or decisions based on data. 
Deep learning is included in the broader category of machine learn-
ing category. These models are built using algorithms and statistical 
techniques that allow computers to learn from large datasets and 
improve their performance over time [56]. To emphasise the main 
differences, it is worth noting that machine learning typically re-
quires fewer data points and provides greater interpretability than 
deep learning. As a rule of thumb, the sample size should be at least 
10 times the number of parameters in an algorithm, and it is gener-
ally easier to determine this value for machine learning models than 
for deep learning models [17]. 

There are two primary types of machine learning algorithms: su-
pervised and unsupervised. On the one hand, supervised learning is 
an approach in which a model is trained using labelled data. After in-
troducing input features (independent variables) along with corre-
sponding target labels (dependent variable), supervised learning 
tries to learn a function or a relationship between the input features 
and the target labels. Once trained, the model can make predictions 
or classify new instances based on the input features. Supervised 
learning is commonly used in prediction and classification problems, 
where the objective is to predict a specific outcome or category, al-

though numerical values can also be predicted through regression 
models. Decision trees, scoring systems, generalised additive models, 
and case-based reasoning are among the primary techniques used 
in various supervised learning algorithms [57]. Each algorithm has its 
own specific characteristics and uses. Linear regression involves fit-
ting a linear equation to the data, enabling the prediction of contin-
uous target variables [35]. Logistic regression is mainly used for bina-
ry classification tasks, although it could also be useful for multi-class 
problems, by modelling the probability of an event occurring based 
on input features [31]. Recursive partitioning is a technique com-
monly used in decision trees, where the data are recursively split into 
subsets based on certain conditions of features [57]. Random forest 
is an ensemble learning method that combines multiple decision 
trees to improve prediction accuracy and reduce overfitting [17,31]. 
The k-nearest neighbour method classifies or predicts the value of a 
data point based on the values of its k-nearest neighbours in the fea-
ture space [34,57]. Gradient boosting is an ensemble technique that 
builds a strong predictive model by iteratively combining multiple 
weak models, often decision trees, to correct errors made by the pre-
vious models [31]. Support vector machines construct hyperplanes 
in a high-dimensional feature space to separate different classes or 
estimate continuous target variables [31,57]. Neural networks are 
complex and versatile machine learning algorithms capable of han-
dling various tasks, including classification, regression and pattern 
recognition. They are inspired by the structure of the human brain. 
Image recognition models are based on this type of algorithms 
[13,16,19,20]. 

On the other hand, unsupervised learning is employed in situa-
tions where the training data lack pre-existing labels or outcomes. Its 
objective is to discover patterns or structures inherent in the data 
without explicit guidance and to uncover similar groups or clusters 
of data. This type of learning is useful for exploring and comprehend-
ing the underlying structure in data and identifying hidden patterns. 
Clustering algorithms and dimensionality reduction methods are 
widely used in the field of unsupervised learning. K-means is a popu-
lar clustering algorithm aiming to divide a dataset into distinct 
groups or clusters based on similarity. The algorithm iteratively as-
signs data points to the nearest cluster centroid and updates the 
centroids until convergence [17]. Principal component analysis (PCA) 
is a dimensionality reduction technique that transforms a high-di-
mensional dataset into a lower-dimensional space by identifying the 
principal components that capture the most significant variance in 
the data. These principal components are orthogonal and ordered in 
terms of their explanatory power. PCA is useful for simplifying com-
plex datasets, visualising data in lower dimensions, and identifying 
the most important features driving variability in the data [56]. 

Thus, the algorithms used in assisted reproduction to predict cate-
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gories using labelled data are of the supervised learning type. When 
encountering AI-based predictive models, clinicians and embryolo-
gists should be familiar with the machine learning lifecycle (Figure 2): 

(1)  Collect and pre-process data: Collect relevant data and carry 
out pre-processing (cleaning, normalising, transforming, etc.) 
to prepare the data for machine learning algorithms. 

(2)  Train a machine learning model: Train a machine learning mod-
el on the pre-processed data using a suitable algorithm and hy-
perparameters. 

(3)  Test and evaluate the model: Test the trained model on a sepa-
rate test dataset and evaluate its performance using suitable 
evaluation metrics. 

(4)  Deploy the model: Deploy the trained model to a production 
environment, such as a web application or a mobile app. 

(5)  Monitor the model: Continuously monitor the performance of 
the deployed model and collect feedback from users. 

(6)  Refine and update the model: Refine and update the deployed 
model periodically using new data and feedback to improve its 
performance and adapt to changing requirements. 

Performance evaluation and model validation 

When discussing performance, the first step is to define what is 
being evaluated. If one encounters studies that claim remarkable re-
sults on the training dataset, it is advisable to exercise caution. Pre-
dicting data that are already in the system makes it easier for the 
computer to find a previous pattern in the known model, leading to 
the overfitting effect. It is entirely normal, and almost necessary, for 
the training set results to be particularly good, as they do not repre-
sent the actual predictive potential of the model. 

As showed in Figure 3, the process of developing a predictive 
model involves an initial partition of the test set, which is kept sepa-

rate from the algorithm's training. Cross-validation is performed on 
the training set by separating a certain percentage and creating the 
model with the training set, then predicting the validation set. This 
process can be repeated several times to obtain cross-validation 
metrics. This prediction can already be considered representative of 
the model's predictive potential. Cross-validation can be performed 
through k-fold cross-validation (e.g., 80% of the dataset for training 
and 20% for validation) [18,28]; as well as training the model with 
the full dataset except for one specimen, predicting it, and repeating 
the process for all specimens in the dataset (leave-one-out cross-val-
idation) [10]. 

Finally, the test dataset is used to validate how the method (train-
ing set+validation set) predicts data that are not in the database. 
Therefore, it can be considered representative of the model's predic-
tive potential [37]. 

Performance metrics for machine learning 

Depending on the type of algorithm, different metrics should be 
chosen to evaluate its performance [56]. For regression models, com-
mon metrics include mean squared error, mean absolute error, root 
mean squared error, and r2 [35]. For classification models, common 
metrics are obtained from a confusion matrix, which unfortunately is 
not always provided in studies. Common metrics include accuracy, 
AUC and AUC precision (positive predictive value), recall (sensitivity), 
negative predictive value and specificity [58]. The F1-score and Mat-
thews correlation coefficient are also metrics to be considered, espe-
cially in imbalanced datasets [27]. It is important to ensure that the 
positive reference is correctly identified in order to avoid confusion 
when evaluating model performance. For example, in a comparison 
of euploidy, it may seem obvious that the aneuploid group should 
be considered as the negative reference. However, the computer 

1. Collect and preprocess data
Metrics train: overfitting risk

K-fold cross-validation

Metrics valid: cross-valid

Metrics test

2. Train AI model

3. Test and evaluate model

4. Deploy and monitor model

5. Refine and update model

Figure 2. Machine learning model lifecycle. AI, artificial intelligence. Figure 3. Performance evaluation and model validation using 
training, validation, and test sets.

Original dataset

Training set → Final model

Training set

Train

Train

Train Train

Train

Validate

Validate

Validate

Validate

Test set

Test set
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may mistakenly assign the aneuploid group as the positive reference 
if not explicitly specified, such as in cases where alphabetical order-
ing is used. Therefore, it is crucial to carefully define the positive and 
negative references before assessing a model’s performance. 

Conclusions: time to implement? 

Different authors have expressed their thoughts on whether or 
not to implement predictive AI models into the daily practice [59-61]. 
From my point of view, it is worth considering implementing an al-
gorithm if its result is robust enough to answer the initial question of 
the requirement. For instance, if the objective was to improve the 
implantation rate, it is not as crucial whether the embryo selection 
model is based on viability, genetics, or a combination of both 
[36,40], nor is the specific value of AUC achieved particularly relevant. 
While a better AUC is theoretically associated with a better implanta-
tion outcome, this cut-off value would not be relevant if the implan-
tation rate with the AI score is superior to that without AI. Neverthe-
less, external validation should be carried out to verify that the re-
sponse to the requirement for integrating an AI system in the labora-
tory is truly satisfactory when applying AI compared to not applying 
AI. From there, it will be necessary to consider verifying the data ei-
ther prospectively or in a multi-center setting. 
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