• Title/Summary/Keyword: Artificial Brain

Search Result 226, Processing Time 0.029 seconds

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices (광 시냅스 및 뉴로모픽 소자 기술)

  • Song, Seungho;Kim, Jeehoon;Kim, Yong-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

Application of Different Tools of Artificial Intelligence in Translation Language

  • Mohammad Ahmed Manasrah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.144-150
    • /
    • 2023
  • With progressive advancements in Man-made consciousness (computer based intelligence) and Profound Learning (DL), contributing altogether to Normal Language Handling (NLP), the precision and nature of Machine Interpretation (MT) has worked on complex. There is a discussion, but that its no time like the present the human interpretation became immaterial or excess. All things considered, human flaws are consistently dealt with by its own creations. With the utilization of brain networks in machine interpretation, its been as of late guaranteed that keen frameworks can now decipher at standard with human interpreters. In any case, simulated intelligence is as yet not without any trace of issues related with handling of a language, let be the intricacies and complexities common of interpretation. Then, at that point, comes the innate predispositions while planning smart frameworks. How we plan these frameworks relies upon what our identity is, subsequently setting in a one-sided perspective and social encounters. Given the variety of language designs and societies they address, their taking care of by keen machines, even with profound learning abilities, with human proficiency looks exceptionally far-fetched, at any rate, for the time being.

Technical Trend and View of Neural Networks for Factory Automation (공장 자동화에 적용되는 Neural Networks의 기술동향 및 전망)

  • Lee, Jin-Seop;Ha, Jae-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.892-895
    • /
    • 1991
  • In this study, it has been refering that disposal of rapidly international information society and artificial intelligence neural networks of the vanguard software technology. This paper is human brain cell structure modeling in order to neural networks realization for order language and computer embodiment of parallel processing. And it is shown that the usage extreme of time saving and correct judgement for business services, Overviews some of the currently popular neural networks architectures, and describes the current state of the neural networks technology.

  • PDF

The Running Control for the Mobile Vehicle

  • Sugisaka, Masanori;Adachi, Takuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.491-491
    • /
    • 2000
  • In this paper, we report the results about the rotational control count on DC motor to drive the mobile vehicle as a first step of the research for the realization of the mobile vehicle with the artificial brain. First of all, we introduce the configuration of the mobile vehicle. This mobile vehicle has one CCD camera driven by a rear wheel. Secondly we show the control methods. This research is adopted the various controls. Finally we report the experimental methods and results and we describe the conclusion of this research.

  • PDF

Modal parameters based structural damage detection using artificial neural networks - a review

  • Hakim, S.J.S.;Razak, H. Abdul
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.159-189
    • /
    • 2014
  • One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.

Self-Improving Artificial Intelligence Technology (자율성장 인공지능 기술)

  • Song, H.J.;Kim, H.W.;Chung, E.;Oh, S.;Lee, J.W.;Kang, D.;Jung, J.Y.;Lee, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.43-54
    • /
    • 2019
  • Currently, a majority of artificial intelligence is used to secure big data; however, it is concentrated in a few of major companies. Therefore, automatic data augmentation and efficient learning algorithms for small-scale data will become key elements in future artificial intelligence competitiveness. In addition, it is necessary to develop a technique to learn meanings, correlations, and time-related associations of complex modal knowledge similar to that in humans and expand and transfer semantic prediction/knowledge inference about unknown data. To this end, a neural memory model, which imitates how knowledge in the human brain is processed, needs to be developed to enable knowledge expansion through modality cooperative learning. Moreover, declarative and procedural knowledge in the memory model must also be self-developed through human interaction. In this paper, we reviewed this essential methodology and briefly described achievements that have been made so far.

Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing (멀티모달 신호처리를 위한 경량 인공지능 시스템 설계)

  • Kim, Byung-Soo;Lee, Jea-Hack;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1037-1042
    • /
    • 2018
  • The neuromorphic technology has been researched for decades, which learns and processes the information by imitating the human brain. The hardware implementations of neuromorphic systems are configured with highly parallel processing structures and a number of simple computational units. It can achieve high processing speed, low power consumption, and low hardware complexity. Recently, the interests of the neuromorphic technology for low power and small embedded systems have been increasing rapidly. To implement low-complexity hardware, it is necessary to reduce input data dimension without accuracy loss. This paper proposed a low-complexity artificial intelligent engine which consists of parallel neuron engines and a feature extractor. A artificial intelligent engine has a number of neuron engines and its controller to process multimodal sensor data. We verified the performance of the proposed neuron engine including the designed artificial intelligent engines, the feature extractor, and a Micro Controller Unit(MCU).

EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control (BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석)

  • Kim, Dong-Eun;Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.172-177
    • /
    • 2013
  • With Brain Computer Interface (BCI) system, a person with disabled limb could use this direct brain signal like electroencephalography (EEG) to control a device such as the artifact arm. The precise force control for the artifact arm is necessary for this artificial limb system. To understand the relationship between control EEG signal and the gripping force of hands, We proposed a study by measuring EEG changes of three grades (25%, 50%, 75%) of hand grip MVC (Maximal Voluntary Contract). The acquired EEG signal was filtered to obtain power of three wave bands (alpha, beta, gamma) by using fast fourier transformation (FFT) and computed power spectrum. Then the power spectrum of three bands (alpha, beta and gamma) of three classes (MVC 25%, 50%, 75%) was classified by using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The result showed that the power spectrum of EEG is increased at MVC 75% more than MVC 25%, and the correct classification rate was 52.03% for left hand and 77.7% for right hand.

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.