Acknowledgement
Grant : 자율성장형 AI 핵심원천기술 연구
Supported by : 한국전자통신연구원
References
- A. Graves et al., "Neural turing machines," arXiv preprint:1410.5401, 2014.
- S. Sukhbaatar et al., "End-to-end memory networks," in Proc. NIPS, 2015.
- A. Santoro et al., "A simple neural network module for relational reasoning," in Proc. NIPS, 2017.
- V. Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning," in Proc. ICML, 2016.
- T. Mikolov et al., "Distributed representations of words and phrases and their compositionality," in Proc. NIPS, 2013.
- P. Bojanowski et al., "Enriching word vectors with subword information," in Proc. TACL, 2017.
- T. Kenter et al., "Siamese CBOW: optimizing word embeddings for sentence representations," in Proc. ACL, 2016.
- R. Kiros et al., "Skip-thought vectors," in Proc. NIPS, 2015.
- 정의석 외 3인, "한국어 음소열 기반 워드 임베딩 기술," 한국어정보학회 학술대회 논문집, 2017.
- S. Park et al., "Subword-level word vector representations for Korean," in Proc. ACL, 2018.
- R. S. Feris et al., "Visual Attributes," Springer International Publishing, 2017.
- A. Farhadi et al., "Describing Objects by their Attributes," in Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2009, pp. 1778-1785.
- O. Russakovsky and F. Li, "Attribute learning in large-scale datasets," in Proc. Eur. Conf. Comput. Vision, 2010, pp. 1-14.
- Z. Liu, et al., "DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations," in Proc. IEEE Int. Conf. Comput. Vision Pattern Recogn., 2016, pp. 106-1104.
- T. Nagarajan and K. Grauman., "Attributes as Operators: Factorizing Unseen Attribute-Object Compositions," in Proc. Eur. Conf. Comput. Vision, 2018, pp. 169-185.
- N. Sarafianos et al., "Deep Imbalanced Attribute Classification using Visual Attention Aggregation," in Proc. Eur. Conf. Comput. Vision, 2018, pp. 708-725.
- J. Song et al., "Selective Zero-Shot Classification with Augmented Attributes," in Proc. Eur. Conf. Comput. Vision, 2018, pp. 474-490.
- K. E. Ak et al., "Learning Attribute Representations with Localization for Flexible Fashion Search," in Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2018, pp. 7708-7717.
- E. Gabrilovich and N. Usunier, "Constructing and Mining Web-scale Knowledge Graphs," in Proc. SIGIR, Tutorial Slide, 2016
- S. Kumar, "A survey of deep learning methods for relation extraction," arXiv:1705.03645, 2017.
- X. Han et al., "FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation," in Proc. EMNLP, 2018, pp. 4803-4809.
- X. Dong et al., "Knowledge vault: A web-scale approach to probabilistic knowledge fusion," in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, 2014, pp. 601-610.
- J. Kim and S.H. Myaeng. "Discovering relations to augment a web-scale knowledge base constructed from the web," in Proc. Int. Conf. Web Intell., Mining Semantics, 2016, pp. 16;1-12.
- D.Q. Nguyen, "An overview of embedding models of entities and relationships for knowledge base completion," arXiv:1703.08098, 2017.
- Q. Wang et al., "Knowledge graph embedding: A survey of approaches and applications," IEEE Trans. Knowledge Data Eng., vol. 29, no. 12, 2017, pp. 2724-2743. https://doi.org/10.1109/TKDE.2017.2754499
- 최현영 등, "지식 베이스 임베딩을 활용한 지식 완성 모델링 기법," 한국정보과학회 논문지, 제45권 제9호, 2018.9, pp. 895-903.
- H. Al-Mubaid and S. Bettayeb, "An Algorithm for Combining Graphs Based on Shared Knowledge," in Proc. ISCA BICoB, 2012. pp. 137-142.
- Q. Xie et al., "An interpretable knowledge transfer model for knowledge base completion," arXiv preprint:1704.05908, 2017.
- G. Dihong and D. Z. Wang, "Extracting Visual Knowledge from the Web with Multimodal Learning," in Proc. IJCAI, 2017, pp. 1718-1724.
- P. Pouya, L. Chen, and S. Singh, "Embedding multimodal relational data for knowledge base completion," arXiv preprint:1809.01341, 2018.