• Title/Summary/Keyword: Articulated robotic manipulator

Search Result 12, Processing Time 0.023 seconds

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

Time-optimal motions of robotic manipulators with constraints (제한조건을 가진 로봇 매니퓰레이터에 대한 최적 시간 운동)

  • 정일권;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In this paper, methods for computing the time-optimal motion of a robotic manipulator are presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem can be reduced to a search for the time-optimal path in the n-dimensional position space. These paths are further optimized with a local path optimization to yield a global optimal solution. Time-optimal motion of a robot with an articulated arm is presented as an example.

  • PDF

A Study on Track Record and Trajectory Control of Articulated Robot Based on Monitoring Simulator for Smart Factory

  • Kim, Hee-Jin;Dong, Guen-Han;Kim, Dong-Ho;Jang, Gi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.149-161
    • /
    • 2020
  • We describe a new approach to implement of trajectory control and track record of articulated manipulator based on monitoring simulator for smart factory. The learning control algorithm was applied in implementation real-time control to provide enhanced motion control performance for robotic manipulators. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, or values of manipulator parameters and payload. Performance of the proposed controller is illustrated by simulation and experimental results for robot manipulator consisting of six joints at the joint space and Cartesian space.by monitoring simulator.

Robust Control for Unknown Disturbance of Robotic System Using Prescribed Tracking Error Constraint Control and Finite-Time SMC (규정된 추종오차 구속제어와 유한시간 슬라이딩 모드 제어를 이용한 로봇시스템의 미지의 외란에 대한 강인제어)

  • Ryu, Hyun-Jea;Shin, Dong-Suk;Han, Seong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.320-325
    • /
    • 2016
  • This paper presents a robust finite-time sliding mode control (SMC) scheme for unknown disturbance and unmodeled nonlinear friction and dynamics in the robotic manipulator. A finite-time SMC (FSMC) surface and finite-time sliding mode controller are constructed to obtain faster error convergence than the conventional infinite-time based SMC. By adding prescribed constraint control term to a finite-time SMC to compensate for unknown disturbance and uncertainties, a robust control scheme can be designed as well as faster convergence control. In addition, simpler controller structure is built by using feed-forwarding upper bound coefficients of each manipulator dynamic parameters instead of model-based control or adaptive observer to estimate unknown manipulator parameters. Simulation and experimental evaluations highlight the efficacy of the proposed control scheme for an articulated robotic manipulator.

Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control (비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어)

  • Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.

A Study on Kinematics Modeling and Motion Control Algorithm Development in Joint for Vertical Type Articulated Robot Arma (수직다관절형 아암의 운동학적 모델링 및 관절공간 모션제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Yang, Jun-Seok;Won, Jong-Beom;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • In this paper, we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • Nguyen, Hoo-Cong;Kim, Jun-Hong;Lee, Hee-Seop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

A Study on Performance Analysis of Articulated Robot System for Smart Factory Based on Monitoring Simulator

  • Kim, Hee Jin;Kim, Dong-ho;Jung, Kum-jun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.889-896
    • /
    • 2020
  • We describe a new approach to the analyze the control performance of robotic manipulator based on the monitoring system. The structure of monitoring simulator is consist of seven modes such as control state mode, coordinate mode, input/output mode, program mode, parameters mode, and track mode. The applied control algorithme consists of an time varying feed-forward and feedback controller. The proposed scheme is simple in structure, fast in computation, and suitable for real-time implimemtation. Moreover, this scheme does not require any accurate dynamic modeling and values of parameters. Performance of the proposed monitoring system is illustrated by simulation and experiment for robot manipulator with six degrees of freedom.

A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process (단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구)

  • Kim, Min-Seong;Choi, Min-Hyuk;Bae, Ho-Young;Im, Oh-Deuk;Kang, Jung-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.

A Study on the Robust Motion Control Technology of Articulated Robot Arm (다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구)

  • Ha, Eon-Tae;Kim, Hyun-Geon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.