• Title/Summary/Keyword: Arterial highway

Search Result 34, Processing Time 0.016 seconds

Feasibility Evaluation of Number of Gyration for HMA and WMA Mixtures (HMA와 WMA 혼합물의 선회 다짐횟수 적정성 검토 연구)

  • Lee, Moon-Sup;Yoon, Chun-Joo;Kwon, Soo-Ahn;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.133-142
    • /
    • 2011
  • The objective of this study is to validate the number of gyrations of Superpave gyratory compactor(SGC) for compaction of hot-mix asphalt (HMA) and warm-mix asphalt(WMA) mixtures. Marshall compaction was also used for comparison purpose. The 13mm and 19mm aggregates of 1st class quality shape were used. A PG64-22 and a PG76-22 for HMA and a PG70-22 for WMA. Four compaction temperatures based on the suggested value were used for each binder using 100 gyrations for SGC and 75 blows per side for Marshall compactor. It was found that SGC compaction was somewhat better than Marshall compaction. The analysis of variance showed that two compactors were significantly different in air voids of 19mm mixtures at ${\alpha}=0.05$ level. The 13mm mixture did not show a significant statistical difference. When compacted at the temperature below a certain level, however, the compaction of two compactors were fond to be proor. Therefore, observing compaction temperature above the minimum level is important to secure proper compaction work. If the minimum temperatures were maintained, 100 gyrations, which was given for HMA of arterial road pavement by the Korean Guide, was found to be appropriate compaction, showing similar or better compaction work than 75 blows per side of Marshall compaction.

The Operation Analysis of Signalized Intersections Using ICU Method (ICU 방법을 활용한 신호교차로 운영분석)

  • Kim, Young Chan;Jeon, Jae Hyeon;Jeong, Young Je;Kim, Eun Jeoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.41-48
    • /
    • 2009
  • The capacity analysis of signalized intersection usually includes a HCM method used at home and abroad and a ICU method this study presents. The HCM method focuses on operation analysis measuring an intersection's delay in terms of given traffic volume, signal operation, and intersection structure data. This method includes planning and design analysis, but these analyses are complex due to being possible through repetitive operation analysis. However the ICU method is a powerful tool for planning and design analysis, because these are possible through brief traffic volume and geometry structure data and consider minimum green time. In this study, the authors studied the ICU method and compared the HCM and ICU by analyzing traffic volume scenarios. Also to consider effectiveness for application of the ICU method, the authors applied the ICU to capacity analysis of intersections on urban arterial for setting major intersection and effect analysis for changing crosswalk type, the number of lane, lane use and operation form of left turn. The result of the analyses shows that the ICU method can measure correct capacity of intersection consist of a broad road in urban area, and is effective for planning and design analysis. This study is expected that traffic experts can grasp correct intersection's capacity and carry out a proper planning or improvement by applying the ICU method to planning and design analysis.

Study of Downward Speed Limit of Main Roads on Traffic Accident and Effect Analysis - In Busan Metropolitan City - (간선도로 최고속도제한 하향이 교통사고에 미치는 영향 및 효과분석 - 부산광역시를 중심으로 -)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.81-90
    • /
    • 2018
  • The purpose of this study is to evaluate the effect of downward speed limit of urban arterial roads at 29 sites in Busan Metropolitan Police Agency to reduce road traffic accidents from '10 to '15. As a result of analyzing the traffic accidents occurred for 1~3 years after the decrease in the speed limit, the number of traffic accidents decreased by 3.09% and the number of injured persons decreased by 8.76%, but the number of deaths decreased by 36.73% The results of this study are as follows. The average speed reduction rate of 6.31km/h was decreased by investigating the change of the vehicle speed before and after the downward speed limit, and the change of average speed was statistically significant in most of the sections. The rate of compliance with the speed limit increased by 10.26% p, which is considered to have greatly improved overall traffic safety. A survey conducted by residents near the target area with a lower speed limit showed that 57.9% of the respondents felt the driving speed of the vehicle was lowered. However, this project was focused on vehicles with limited speed road signs and traffic safety signs, Only 25.8% of respondents said walking safety was improved. In the future, it is necessary to consider the safety of pedestrians by improving roads around roads such as road curvature and separation. In addition, there is a clear positive result in terms of decreasing the fatal accidents in the downward speed limit zone of Busan Metropolitan Subway. However, more detailed analysis is needed for the 29 accidents. Therefore, it is expected that traffic practitioners will be able to utilize it as a basis to increase the accident reduction effect by setting an appropriate speed limit based on the easy and objective grounds.

Changes of Physical Structure of Hangang(Riv.) in Seoul City Area (서울시 구간 한강의 물리적 구조 변화에 관한 연구)

  • Hong, Sukhwan;Yeum, Junghun;Han, Bongho
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • This study aims to set up the basic data to manage the waterfowl habitat through the analysis of the changes of physical structure according to the time series of Hangang(Riv.) as water birds' habitat. Study area was 41.5km in length from Paldang bridge to Hangju bridge. during total length of 497.52km and horizontal boundary was based on the protected lowland in year 1975. As the analysis result of land use from the center of water to adjacent road to the river, ratio of year 1975 was in order of sedimentary land(22.7%), surface water(20.7%), built-up area(16.9%), field(16.2%), paddy field(15.9%), and afterwards most of the areas were changed through the construction of arterial highway and submerged weir in order to use Hangang(Riv.). In year 1985, the area ratio of protected lowland(57.8%) and surface water(32.8%) dramatically increased. After construction of river bank the recreational areas continually increased and relatively natural areas decreased. In year 2005, the area ratio of protected lowland was enlarged to 57.6% and surface water also to 33.3%. While the length of both riversides and naturalness decreased by 10.9%, 91.5% respectively in year 2005 compared to year 1975, the depth of water increased by 1.46m. Comprehensively, the flow of changes by physical structure in Hangang(Riv.) for 30 years was divided into two periods. The main characteristics in the first period were decrease of riverside area and enlargement of the surface water through the massive construction before middle of year 1980, and afterwards revetments were intensively artificialized with changes of land use for amusement area. In terms of water fowl habitat, Hangang(Riv.) which previously had various types of habitat condition was changed into simplified habitat for few of species, and the active improvement apporach was needed for habitat diversity.