• Title/Summary/Keyword: Arsenic Contaminated Soils

Search Result 111, Processing Time 0.021 seconds

Environmental Assessment and Decision of Remediation Scope for Arsenic Contaminated Farmland Soils and River Deposits Around Goro Abandoned Mine, Korea (토양 정밀 조사에 의한 고로폐광산 주변 비소오염 토양 및 하천퇴적토의 오염도 평가 및 오염 토양 복원 규모 설정)

  • 차종철;이정산;이민희
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2003
  • Soil Precise Investigation(SPI) for river deposits and farmland soils around Goro abandoned Zn-mine, Korea was performed to assess the pollution level of heavy metals(As. Pb, Cd, Cu) and to estimate the remediation volume for contaminated soils. Total investigation area was about 950000 $m^2$, which was divided into each section of 1500 $m^2$ corresponding to one sampling site and 545 samples for surface soil(0-10cm in depth) and 192 samples for deep soil(10-30cm in depth) from the investigation area were collected for analysis. Concentrations of Cu, Cd, Pb at all sample sites were shown to be lower than Soil Pollution Warning Limit(SPWL). For arsenic concentration, in surface soils, 20.5% of sample sites(104 sites) were over SPWL(6mg/kg) and 6.7%(34 sites) were over Soil Pollution Counterplan Limit(SPCL: 15mg/kg) suggesting that surface soils were broadly contaminated by As. For deep soils, 10.4% of sample sites(18 sites) were over SPWL and 0.6%(1 site) were over SPCL. Four pollution grades for sample locations were prescribed by the Law of Soil Environmental Preservation and Pollution Index(PI) for each soil sample was decided according to pollution grades(over 15.0 mg/kg, 6.00-15.00 mg/kg, 2.40-6.00 mg/kg, 1.23-6.00 mg/kg). The pollution contour map around Goro mine based on PI results was finally created to calculate the contaminated area and the remediation volume for contaminated soils. Remediation area with over SPWL concentration was about 0.3% of total area between Goro mine and a projected storage dam and 0.9% of total area was over 40% of SPWL. If the remediation target concentration was determined to over background level concentration, 1.1% of total area should be treated for remediation. Total soil volume to be treated for remediation was estimated on the assumption that the thickness of contaminated soil was 30cm. Soil volume to be remediated based on the excess of SPWL was estimated at 79,200$m^3$, soil volume exceeding 40% of SPWL was about 233,700 $m^3$, and soil volume exceeding the background level(1.23 mg/kg) was 290,760 TEX>$m^3$.

Distribution of Arsenic Fraction in Soil Around Abandoned Mining Area and Uptake by Rice

  • Kim, Hyuck-Soo;Go, Woo-Ri;Kang, Dae-Won;Yoo, Ji-Hyock;Kim, Kye-Hoon;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.391-396
    • /
    • 2015
  • Arsenic (As) contamination of agricultural soils resulting from mining activity has caused major concern due to the potential health risk. Therefore the current study was carried out to investigate the relationship between fractionation of As in soil and rice uptake and to provide a basic information for adequate management of As contaminated agricultural soil. Twenty agricultural soils and rice affected by the abandoned mining sites were collected. Soil chemical properties and As concentrations (total and sequential extracted) in soils were determined and As concentrations in polished rice were analyzed. The average concentration of As in non-specifically adsorbed (F1), specifically adsorbed (F2), amorphous hydrous oxides of Fe and Al (F3), crystalline hydrous oxides of Fe and Al (F4) and residual phase (F5) were 0.08, 1.38, 10.34, 3.26 and $10.98mgkg^{-1}$, respectively. Both soil pH and available phosphorus were positively correlated with the concentrations of As in F1 and F2. These results indicate that increasing the soil pH and available phosphorus can significantly increase the easily mobile fractions of As (F1 and F2). The average concentration of As in polished rice was $0.09mgkg^{-1}$. The concentrations of As in F1 and F2 showed a positive correlation with the concentrations of As in polished rice. Therefore soil pH and available phosphorus affect the distribution of As fractionation in soils and thus affect As bioavailability.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

X-ray micro-imaging of the arsenic absorption of sap flow in xylem vessels of a fern brake (X-ray 영상기법을 이용한 비소 흡수가 고사리 내부 수액 거동에 미치는 영향 연구)

  • Lee, Jin-Pyoung;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.92-95
    • /
    • 2006
  • The global environment is deteriorating at an alarming rate despite of enhanced international environmental regulation. Many studies have been performed to reduce pollutants. Recently, phytoremediation, plant-based technology for the removal of toxic contaminants from soil, water, and air, has been receiving large attention. Arsenic-contaminated soil is one of the major pollutant sources fur drinking water. The fern brake (Pteris erotica) has been reported as a hyper-accumulate arsenic from soils. In this study, we investigated the arsenic absorption effect on sap flow inside xylem vessels of a fern brake. The synchrotron X-ray micro-imaging technique was employed to monitor flow inside the plant non-invasively. The captured phase-contrast X-ray images show both anatomy and transport of water inside the fern brake. The refilling process of water containing arsenic inside the xylem vessels of fern brake's leaves and stems was clearly observed. These results would provide important information needed fur understanding the mechanisms of accumulation, translocation, and transformation of toxic materials in plants.

  • PDF

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique (포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거)

  • Lee, Seungwoo;Jeon, Chilsung;Lee, Eunseong;Yoo, Kyungmin;Choi, Junhyun;Kim, Hyunjung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.343-352
    • /
    • 2016
  • Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing (토양세척에 의한 비소 및 중금속 오염토양의 복원)

  • Ko Ilwon;Lee Cheol-Hyo;Lee Kwang-Pyo;Kim Kyoung-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.52-61
    • /
    • 2004
  • In order to remediate soils contaminated with oxyanionic As and cationic Zn and Ni through the pilot-scale acid washing, the effectiveness of acid washing and the properties of contaminated soils, fine soil particle and dissolved contaminants were evaluated. $H_{2}SO_4\;and\;H_{3}PO_4$ washing at pH $2{\sim}3$ enhanced the removal of As by the presence of competitive oxyanions and HCl washing effectively removed simultaneously As, Zn and Ni. The effectiveness of soil washing was little enhanced above the critical reaction time, and the carbonate, Fe/Mn oxide and organic/sulfides associated fraction were dominantly removed. The washing of coarse soil particles was highly efficient, but that of fine soil particles($<74{\mu}m$) was recalcitrant due to the enrichment with contaminants. Moreover, the physical separation of fine particles($<149{\mu}m$) enhanced the overall efficiency of soil washing. Therefore, both chemical extraction and separation of fine soil particles showed the high effectiveness of soil washing in the intersection point to minimize the amount of fine soil particles and to maximize the chemical extraction of contaminants.

Study on Accuracy Improvement of Predictive Model of Arsenic Transfer from Contaminated Soil to Polished Rice (오염토양으로부터 백미로 전이되는 비소함량 예측모델의 정확도 향상 연구)

  • Jo, Seungha;Han, Hyeop-Jo;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.389-398
    • /
    • 2022
  • Many studies have been conducted to accurately predict the correlations between As and heavy metals content in contaminated soil and cultivated crops; however, due to the low correlation between the two, few clear results were obtained to date. This study aimed to create statistical models that predict the As content transferred from soil to polished rice, considering the physicochemical properties of the soil, as well as the total content and the single-extracted content of As in the soil. Predictive models were derived through regression analysis while sequentially classifying soil samples according to pH, soluble As content by single extraction, and organic matter content of the soil. The correlation coefficients between the As content in 80 polished rice and total As content and Mehlich soluble As content in the soil were low, 0.533 and 0.493, respectively. However, the models derived after sequential classification of the soil by pH, a ratio of total As content to Mehlich soluble As content, and organic matter content greatly increased the predictive power; ① 0.963 for 13 soils with a pH higher than 6.5, ② 0.849 for 15 soils with pH lower than 6.5 and a high ratio of AsTot/AsMehlich, ③ 0.935 for 30 soils with pH lower than 6.5, a high ratio of AsTot/AsMehlich, and organic matter content lower than 8.5%. The suggested prediction model of As transfer from soil to polished rice derived by soil classification may serve as a statistically significant methodology in establishing a rice cultivation standard for arsenic-contaminated soil.

Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil (담수된 논토양의 환원 환경에서 비소 및 중금속의 용출특성과 석회석 및 제강슬래그의 안정화 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Yu, Chan
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.251-263
    • /
    • 2011
  • In order to investigate treatment effects of limestone and steel refining slag for paddy soils contaminated with arsenic and heavy metals, a lab-column test was carried out under reducing environments of flooded paddy soils. In conditions of the flooded paddy soils, at the point of time when iron and manganese were reduced and leached rapidly, heavy metals also leached rapidly, and some leachate samples from an untreated soil exceeded regulatory standards. On the contrary, all samples from soils treated with limestone 5% and steel refining slag 5% respectively were below the regulatory standards, showing much lower heavy metal concentrations than in the untreated soil. Arsenic increased continuously during the observation period according to its typical characteristics, and along with decreasing redox potential, arsenic was expected to leach as $H_3AsO_3$-of form $A^{3+}$ with high mobility and strong toxicity. Limestone and steel refining slag showed high treatment effects against heavy metals present in soil and steel refining slag especially showed the high treatment effects against arsenic.

비소 및 중금속 오염 토양의 파일럿 토양 세척 연구

  • 고일원;이광표;이철효;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.239-242
    • /
    • 2004
  • Pilot-scale soil washing facility was developed and operation condition was determined in order to remediate a soil contaminated with As, Ni and Zn. Soil washing facility is composed of soil particle separation, soil washing and wastewater treatment process. Both oxyanionic As and cationic Ni and Zn were effciently removed using HCl rather 0than H$_2$SO$_4$ and H$_2$PO$_4$. This is why oxyanion and cation metals can be extracted simultaneously from the contaminated soil in acidic solution. Further, the contaminated soils include calcite and then demand much acidity, that is consumption of acid solution. Fine particles are enriched with contaminants, and coarse particles are removed effectively rather than fine particles. As, Ni and Zn are strongly associated with minerals, and then the residence time should be increased for a reaction with washing solution.

  • PDF