• Title/Summary/Keyword: Arrhythmia Detection

Search Result 98, Processing Time 0.029 seconds

Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification (조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출)

  • Cho, Ik-sung;Yoon, Jeong-oh;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.427-436
    • /
    • 2016
  • In general, QRS duration represent a distance of Q start and S end point. However, since criteria of QRS duration are vague and Q, S point is not detected accurately, arrhythmia classification performance can be reduced. In this paper, we propose extraction of Q, S start and end point RS feature based on phase transition tracking method after we detected R wave that is large peak of electrocardiogram(ECG) signal. For this purpose, we detected R wave, from noise-free ECG signal through the preprocessing method. Also, we classified QRS pattern through differentiation value of ECG signal and extracted Q, S start and end point by tracking direction and count of phase based on R wave. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 99.60%. PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction(PVC). The achieved scores indicate the average detection rate of 94.12% in PVC.

Arrhythmia Classification Method using QRS Pattern of ECG Signal according to Personalized Type (대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류)

  • Cho, Ik-sung;Jeong, Jong -Hyeog;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1728-1736
    • /
    • 2015
  • Several algorithms have been developed to classify arrhythmia which either rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose arrhythmia classification method using QRS Pattern of ECG signal according to personalized type. For this purpose, we detected R wave through the preprocessing method and define QRS pattern of ECG signal by QRS feature Also, we detect and modify by pattern classification, classified arrhythmia duplicated QRS pattern in realtime. Normal, PVC, PAC, LBBB, RBBB, Paced beat classification is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.98%, 97.22%, 95.14%, 91.47%, 94.85%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.

PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability (개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류)

  • Cho, Ik-Sung;Yoon, Jeong-Oh;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1531-1539
    • /
    • 2014
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. In other words, the design of algorithm that exactly detects abnormal signal and classifies PVC by analyzing the persons's physical condition and/or environment and variable QRS pattern is needed. Thus, PVC classification by personalized abnormal signal detection and QRS pattern variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and subtractive operation method and selected abnormal signal sets. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of abnormal beat detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 98.33% in abnormal beat classification error and 94.46% in PVC classification.

Cardiac Disease Detection Using Modified Pan-Tompkins Algorithm

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2019
  • The analysis of electrocardiogram (ECG) signals facilitates the detection of various abnormal conditions of the human heart. The QRS complex is the most critical part of the ECG waveform. Further, different diseases can be identified based on the QRS complex. In this paper, a new algorithm based on the well-known Pan-Tompkins algorithm has been proposed. In the proposed scheme, the QRS complex is initially extracted by removing the background noise. Subsequently, the R-R interval and heart rate are calculated to detect whether the ECG is normal or has some abnormalities such as tachycardia and bradycardia. The accuracy of the proposed algorithm is found to be almost the same as the Pan-Tompkins algorithm and increases the R peak detection processing speed. For this work, samples are used from the MIT-BIH Arrhythmia Database, and the simulation is carried out using MATLAB 2016a.

P Wave Detection based on QRST Cancellation Zero-One Substitution

  • Cho, Ik-Sung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Cardiac arrhythmias are common heart diseases and generally cause sudden cardiac death. Electrocardiogram (ECG) is an effective tool that can reveal the electrical activity of the heart and diagnose cardiac arrhythmias. We propose detection of P waves based on QRST cancellation zero-one substitution. After preprocessing, the QRST segment is determined by detecting the Q wave start point and T wave end point separately. The Q wave start point is detected by digital analyses of the QRS complex width, and the T wave end point is detected by computation of an indicator related to the area covered by the T wave curve. Then, we determine whether the sampled value of the signal is in the interval of the QRST segment and substitute zero or one for the value to cancel the QRST segment. Finally, the maximum amplitude is selected as the peak of the P wave in each RR interval of the residual signal. The average detection rate for the QT database was 97.67%.

A Study of the Atrial Arrhythmia Diagnosis Algorithm (심방성 부정맥 진단 알고리즘에 관한 연구)

  • 황선철
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 1989
  • This papaer presents a new algorithm for the P-wave detection in the ECG signal. Digital differentiation method (7-point derivative) is used for detecting P-waves exactly. This algorithm can detect various parameters of PR, PP, RR interval, which are important to diagnosis AV blocks and WPW syndrome. Especially, this algorithm can detect P-waves very efficiently not only in well-preprocessed waves but in pccr waves with noise and artifact. And it enables to develope more reliable automatic diagnosis algorithm.

  • PDF

Detection of Premature Ventricular Contraction Using Discrete Wavelet Transform and Fuzzy Neural Network (이산 웨이블릿 변환과 퍼지 신경망을 이용한 조기심실수축 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.451-459
    • /
    • 2009
  • This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.

  • PDF

A real-time QRS complex detection algorithm using topological mapping in ECG signals (심전도 신호의 위상학적 팹핑을 이용한 실시간 QRS 검출 알고리즘)

  • 이정환;정기삼;이병채;이명호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.48-58
    • /
    • 1998
  • In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.

  • PDF

Patient Adaptive Pattern Matching Method for Premature Ventricular Contraction(PVC) Classification (조기심실수축(PVC) 분류를 위한 환자 적응형 패턴 매칭 기법)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2021-2030
    • /
    • 2012
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Particularly, in the healthcare system that must continuously monitor patient's situation, it is necessary to process ECG (Electrocardiography) signal in realtime. In other words, the design of algorithm that exactly detects R wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, the patient adaptive pattern matching algorithm for the classification of PVC is presented in this paper. For this purpose, we detected R wave through the preprocessing method, adaptive threshold and window. Also, we applied pattern matching method to classify each patient's normal cardiac behavior through the Hash function. The performance of R wave detection and abnormal beat classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.33% in R wave detection and the rate of 0.32% in abnormal beat classification error.