• Title/Summary/Keyword: Aromatic amino compounds

Search Result 63, Processing Time 0.023 seconds

Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds

  • Duan, Zhongyu;Ma, Guoli;Zhang, Wenjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4003-4006
    • /
    • 2012
  • A novel copper nanoparticles were synthesized from cupric sulfate using hydrazine as reducing reagents. A series of aromatic nitro compounds were reacted with sodium borohydride in the presence of the copper nanoparticles catalysts to afford the aromatic amino compounds in high yields. Additionally, the catalysts system can be recycled and maintain a high catalytic effect in the reduction of aromatic nitro compounds.

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Inhibition of Aromatic L-Amino Acid Decarboxylase (AADC) by Some Phenolic Compounds from Medicinal Plants (천연 페놀성 화합물들의 방향족 아미노산 탈탄산효소 저해작용)

  • Ryu, Shi-Yong;Han, Yong-Nam;Han, Byung-Hoon
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.791-794
    • /
    • 1994
  • Sixteen kinds of naturally occurring phenolic compounds including 5 stilbenes, 7 flavonoids and 4 anthraquinones were examined in the inhibitory activity against rat liver AADC(aromatic L-amino acid decarboxylase) in vitro, using 5-hydroxytryptophan as a substrate. Three hydroxystilbenes, resveratrol 1, rhapontigenin 3 and piceatanol 5, which were known to be monoamine oxidase A inhibitors, exhibited a significant inhibition against AADC($IC_{50}$=20, 8 and $5\;{\mu}M$, respectively). By the comparison of the activity of each phenolic compound, it was suggested that the 3',4'-dihydroxyphenyl group of stilbenes or flavones was the best pharmacophore for the AADC inhibitory activity.

  • PDF

Carbon-based Solid Acid Catalyzed One-pot Mannich Reaction: A Facile Synthesis of β-Amino Carbonyl Compounds

  • Davoodnia, Abolghasem;Tavakoli-Nishaburi, Afsaneh;Niloofar, Tavakoli-Hoseini
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.635-638
    • /
    • 2011
  • A simple and efficient method for the synthesis of $\beta$-amino carbonyl compounds by one-pot three-component Mannich reaction of acetophenone, aromatic aldehydes and aromatic amines using a carbon-based solid acid (CBSA), as an effective and reusable catalyst, is described. The present methodology offers several advantages such as simple procedure with an easy work-up, shorter reaction times, and high yields.

Reduction of Aromatic Nitro Group by Activated Cu-Zn-$NH_2NH_2{\cdot}H_2O$ in Ethanol (활성화시킨 Cu-Zn 과 히드라진을 이용한 방향족 니트로 화합물의 환원반응)

  • Byung Hee Han;Dae Hyun Shin;Hyun Ro Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.577-581
    • /
    • 1989
  • Activated Cu-Zn by the reaction of aqueous cupric sulfate and excess Zn showed the exceptional catalytic activity for the reduction of aromatic nitro compounds to the corresponding amino compounds in the presence of hydrazine monohydrate in ethanol. But, aliphatic nitro compounds were not reduced to the amino compounds.

  • PDF

Excitation Mechanism of Fluorescent Polycyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons in Peroxyoxalate Chemiluminescence Reactions

  • Sung Chul Kang;Kang-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.224-227
    • /
    • 1990
  • The excitation mechanism of polycyclic aromatic amines (amino-PAHs) and polycyclic aromatic hydrocarbons(PAHs) for the chemiluminescence arising from the reaction between oxalate ester, bis(2,4,6-trichlorophenyl)oxalate (TCPO) or bis(2,4-dinitrophenyl)oxalate (DNPO) and hydrogen peroxide has been studied in terms of the excitation efficiencies to singlet excitation energies and the oxidative half-wave potentials. As a results of the study, the excitations of both amino-PAHs and PAHs appear to involve the charge transfer type of energy transfer. However the chemiluminescence efficiency corrected for fluorescence quantum yield of the amino-PAHs are varied more sensitively to the oxidative half-wave potential than that of PAHs possibly due to the large difference in solvation energy between the compounds and their ions.

Polyaniline/SiO2 Catalyzed One-pot Mannich Reaction: An Efficient Synthesis of β-amino Carbonyl Compounds (Polyaniline/SiO2를 이용한 one-pot Mannich 반응: β-amino carbonyl 화합물의 효율적인 합성)

  • Yelwande, Ajeet A.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.644-649
    • /
    • 2011
  • Polyaniline/$SiO_2$ catalyzed one-pot mannich reaction of acetophenone, aromatic aldehydes and aromatic amines are carried out in ethanol to afford various ${\beta}$-amino ketones. The various wt% of polyaniline were supported on pure silica synthesized by using chemical oxidative method. The catalyst prepared has been characterized by means of thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). Solvent stability of catalyst was tested using UV-Visible spectroscopy. This protocol has several advantages such as high yield, simple work up procedure, non-toxic, clean, easy recovery and reusability of the catalyst.

Research Trend about the Development of White Biotech-Based Aromatic Compounds (화이트바이오텍기반 방향족화합물 개발에 관한 연구동향)

  • Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.306-315
    • /
    • 2009
  • Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, the production of aromatic intermediates and derivatives in biosynthetic pathway of aromatic amino acids from glucose might be replaced by the production of petrochemical-based aromatic chemical feedstock including benzene-derived aromatic compounds. In this review, I briefly described the production technology for hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, and indole 3-acetic acid using metabolic engineering, bioconversion, and chemical process. The problems and possible solutions regarding development of production technology for competitive white biotech-based aromatic compounds were also discussed.

Volatile Flavor Compounds in Pen Shell By-product Hydrolysate (키조개 부산물 단백질 가수분해물의 휘발성 향기성분에 관한 연구)

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.964-971
    • /
    • 1995
  • Volatile flavor compounds and free amino acids in untreated and hydrolysate pen shell by-product produced with APL 440 protease were compared by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry. A total of 109 volatile flavor compounds were detected in hydrolysate (65 compounds) or the 109 volatile flavor compounds were detected in untreated pen shell by-product (88). These compounds were composed of aldehydes(16), ketones(17), alcohols(31), nitrogen containing compounds (16), aromatic hydrocarbon compounds(8), esters(3), and miscellaneous compounds (17). Levels of aldehydes and aromatic hydrocarbons decreased after hydrolysis, whereas levels of nitrogen containing compounds increased 3 times than in untreated pen shell by-product. Taurine, known to be having a physiological function, was accounted for 31.25% of total amino acids in hydrolysate.

  • PDF

[RETRACTED] Changes in the volatile aromatic compounds and amino acid contents of distilled soju using co-fermentation by Saccharomyces cerevisiae and Hanseniaspora uvarum yeasts ([논문철회] Saccharomyces cerevisiae 와 Hanseniaspora uvarum 효모 혼합발효를 이용한 증류식 소주의 휘발성 향기성분 및 아미노산 함량 변화)

  • Kyu-Taek Choi;Chun-Woo Park;Su-Hyun Lee;Ye-Na Lee;Ji-Yun Oh;Jun-Su Choi;Deokyeong Choe;Sae-Byuk Lee
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1029-1042
    • /
    • 2023
  • This study aimed to apply the technology of increasing the volatile aromatic compounds in wine through mixed fermentation of Saccharomyces cerevisiae and non-Saccharomyces yeasts to make distilled soju. The expectation was to induce changes in metabolites such as volatile aromatic compounds before the distillation process, followed by concentrating these compounds through distillation to enhance the odor property of distilled soju. Additionally, the study aimed to examine the impact of mixed fermentation with S. cerevisiae and non-Saccharomyces yeasts on distilled soju's free amino acid content. As a result, when Hanseniaspora uvarum yeast was used, there was an increase in the content of low molecular weight volatile aroma compounds, particularly esters. Distilled soju co-fermented with S. cerevisiae and H. uvarum SJ69 exhibited similar amino acid content to distilled soju single-fermented with S. cerevisiae. However, distilled soju co-fermented with S. cerevisiae and H. uvarum S6, a decrease in amino acid content. Sensory evaluation results indicated a higher odor score in distilled soju co-fermented with S. cerevisiae and H. uvarum S6, suggesting that the mixed fermentation technology utilizing H. uvarum could contribute to improving the quality of distilled soju in the future.