• Title/Summary/Keyword: Arithmetic Operation Algorithm

Search Result 94, Processing Time 0.029 seconds

Hardware Design of Pipelined Special Function Arithmetic Unit for Mobile Graphics Application (모바일 그래픽 응용을 위한 파이프라인 구조 특수 목적 연산회로의 하드웨어 설계)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1891-1898
    • /
    • 2013
  • To efficiently execute 3D graphic APIs, such as OpenGL and Direct3D, special purpose arithmetic unit(SFU) which supports floating-point sine, cosine, reciprocal, inverse square root, base-two exponential, and logarithmic operations is designed. The SFU uses second order minimax approximation method and lookup table method to satisfy both error less than 2 ulp(unit in the last place) and high speed operation. The designed circuit has about 2.3-ns delay time under 65nm CMOS standard cell library and consists of about 23,300 gates. Due to its maximum performance of 400 MFLOPS and high accuracy, it can be efficiently applicable to mobile 3D graphics application.

Design of High Speed Binary Arithmetic Encoder for CABAC Encoder (CABAC 부호화기를 위한 고속 이진 산술 부호화기의 설계)

  • Park, Seungyong;Jo, Hyungu;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.774-780
    • /
    • 2017
  • This paper proposes an efficient binary arithmetic encoder hardware architecture for CABAC encoding, which is an entropy coding method of HEVC. CABAC is an entropy coding method that is used in HEVC standard. Entropy coding removes statistical redundancy and supports a high compression ratio of images. However, the binary arithmetic encoder causes a delay in real time processing and parallel processing is difficult because of the high dependency between data. The operation of the proposed CABAC BAE hardware structure is to separate the renormalization and process the conventional iterative algorithm in parallel. The new scheme was designed as a four-stage pipeline structure that can reduce critical path optimally. The proposed CABAC BAE hardware architecture was designed with Verilog HDL and implemented in 65nm technology. Its gate count is 8.07K and maximum operating speed of 769MHz. It processes the four bin per clock cycle. Maximum processing speed increased by 26% from existing hardware architectures.

A Maximum Power Control of IPMSM with Real-time Parameter Identification

  • Jun, Hyunwoo;Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.110-116
    • /
    • 2017
  • This paper proposed a new real-time parameter tracking algorithm. Unlike the convenience algorithms, the proposed real-time parameter tracking algorithm can estimate parameters through three-phase voltage and electric current without coordination transformation, and does not need information on magnetic flux. Therefore, it can estimate parameters regardless of the change according to operation point and cross-saturation effect. In addition, as the quasi-real-time parameter tracking technique can estimate parameters through the four fundamental arithmetic operations instead of complicated algorithms such as numerical value analysis technique and observer design, it can be applied to low-performance DSP. In this paper, a new real-time parameter tracking algorithm is derived from three phase equation. The validity and usefulness of the proposed inductance estimation technique is verified by simulation and experimental results.

A fully digitized Vector Control of PMSM using 80296SA (80296SA를 이용한 영구자석 동기전동기 벡터제어의 완전 디지털화)

  • 안영식;배정용;이홍희
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.5-8
    • /
    • 1998
  • The adaptation to vector control theory is so generalized that it is widely used for implementing the high-performance of AC machine. Nowadays, One-Chip microprocessors or DSP chips are being well-used to implement Vector Control algorithm. DSP Chip have less flexibility for memory decoding and I/O rather than One-Chip microprocessor so that is requires more additional circuit and high cost. And the past One-Chip micro processors have difficult of implementation the complex algorithm because of small memory capacity and low arithmetic performance. Therefore we implemented the vector control algorithm of PMSM(Permanent Magnetic Synchronous Motors) using 80296SA form intel , which have many features as 6M memory space, 500MHz clock frequency, including memory decoding circuit and general I/O, Special I/O(EPA, Interrupt controller, Timer/Count, PWM generator) which is proper controller for the complex algorithm or operation program requiring so much memory capacity, So in this paper we fully digitized the vector control of PMSM included SVPWM Voltage controller using the intel 80296SA

  • PDF

Motion Control Algorithm Expanding Arithmetic Operation for Low-Cost Microprocessor (저가형 마이크로프로세서를 위한 연산처리 확장 모션제어 알고리즘)

  • Moon, Sang-Chan;Kim, Jae-Jun;Nam, Kyu-Min;Kim, Byoung-Soo;Lee, Soon-Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1079-1085
    • /
    • 2012
  • For precise motion control, S-curve velocity profile is generally used but it has disadvantage of relatively long calculation time for floating-point arithmetics. In this paper, we present a new generating method for velocity profile to reduce delay time of profile generation so that it overcomes such disadvantage and enhances the efficiency of precise motion control. In this approach, the velocity profile is designed based on the gamma correction expression that is generally used in image processing to obtain a smoother movement without any critical jerk. The proposed velocity profile is designed to support both T-curve and S-curve velocity profile. It can generate precise profile by adding an offset to the velocity profile with decimals under floating point that are not counted during gamma correction arithmetic operation. As a result, the operation time is saved and the efficiency is improved. The proposed method is compared with the existing method that generates velocity profile using ring buffer on a 8-bit low-cost MCU. The result shows that the proposed method has no delay in generating driving profile with good accuracy of each cycle velocity. The significance of the proposed method lies in reduction of the operation time without degrading the motion accuracy. Generated driving signal also shows to verify effectiveness of the proposed method.

Design of a ECC arithmetic engine for Digital Transmission Contents Protection (DTCP) (컨텐츠 보호를 위한 DTCP용 타원곡선 암호(ECC) 연산기의 구현)

  • Kim Eui seek;Jeong Yong jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.176-184
    • /
    • 2005
  • In this paper, we implemented an Elliptic Curve Cryptography(ECC) processor for Digital Transmission Contents Protection (DTCP), which is a standard for protecting various digital contents in the network. Unlikely to other applications, DTCP uses ECC algorithm which is defined over GF(p), where p is a 160-bit prime integer. The core arithmetic operation of ECC is a scalar multiplication, and it involves large amount of very long integer modular multiplications and additions. In this paper, the modular multiplier was designed using the well-known Montgomery algorithm which was implemented with CSA(Carry-save Adder) and 4-level CLA(Carry-lookahead Adder). Our new ECC processor has been synthesized using Samsung 0.18 m CMOS standard cell library, and the maximum operation frequency was estimated 98 MHz, with the size about 65,000 gates. The resulting performance was 29.6 kbps, that is, it took 5.4 msec to process a 160-bit data frame. We assure that this performance is enough to be used for digital signature, encryption and decryption, and key exchanges in real time environments.

Enhanced Processor-Architecture for the Faster Processing of Genetic Algorithm (유전 알고리즘 처리속도 향상을 위한 강화 프로세서 구조)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.224-229
    • /
    • 2005
  • Generally, genetic algorithm (GA) has too much time and space complexity when it is running in the typical processor. Therefore, we are forced to use the high-performance and expensive processor by this reason. It also works as a barrier to implement real device, such a small mobile robot, which is required only simple rules. To solve this problem, this paper presents and proposes enhanced processor-architecture for the faster GA processing. A typical processor architecture can be enhanced and specialized by two approaches: one is a sorting network, the other is a residue number system (RNS). A sorting network can improve the time complexity of which needs to compare the populations' fitness. An RNS can reduce the magnitude of the largest bit that dictates the speed of arithmetic operation. Consequently, it can make the total logic size smaller and innovate arithmetic operation speed faster.

A Hardware Design for Realtime Correction of a Barrel Distortion Using the Nearest Pixels on a Corrected Image (보정 이미지의 최 근접 좌표를 이용한 실시간 방사 왜곡 보정 하드웨어 설계)

  • Song, Namhun;Yi, Joonhwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.49-60
    • /
    • 2012
  • In this paper, we propose a hardware design for correction of barrel distortion using the nearest coordinates in the corrected image. Because it applies the nearest distance on corrected image rather than adjacent distance on distorted image, the picture quality is improved by the image whole area, solve the staircase phenomenon in the exterior area. But, because of additional arithmetic operation using design of bilinear interpolation, required arithmetic operation is increased. Look up table(LUT) structure is proposed in order to solve this, coordinate rotation digital computer(CORDIC) algorithm is applied. The results of the synthesis using Design compiler, the design of implementing all processes of the interpolation method with the hardware is higher than the previous design about the throughput, In case of the rear camera, the design of using LUT and hardware together can reduce the size than the design of implementing all processes with the hardware.

A Variable Sample Rate Recursive Arithmetic Half Band Filter for SDR-based Digital Satellite Transponders (SDR기반 디지털 위성 트랜스폰더를 위한 가변 표본화율의 재귀 연산 구조)

  • Baek, Dae-Sung;Lim, Won-Gyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1079-1085
    • /
    • 2013
  • Due to the limited power supply resources, it is essential that the minimization of algorithmic operation and the reduction of the hardware logical-resources in the design of the satellite transponder. It is also required that the transponder process the signals of various bandwidth efficiently, that is suitble for the SDR-based implementation. This paper proposes a variable rate down sampler which can provide variable bandwidth and data rate for carrier, ranging and sub-band command signals respectively. The proposed down sampler can provide multiple $2^M$ decimated outputs from a single half band filter with recursive arithmetic architecture, which can minimize the hardware resources as well as the arithmetic operations. The algorithm for hardware implementation as well as the analysis for the passband flatness and aliasing is presented and varified by the FPGA implementation.

MS64: A Fast Stream Cipher for Mobile Devices (모바일 단말에 적합한 고속 스트림 암호 MS64)

  • Kim, Yoon-Do;Kim, Gil-Ho;Cho, Gyeong-Yeon;Seo, Kyung-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.759-765
    • /
    • 2011
  • In this paper, we proposed fast stream cipher MS64 for use mobile that it is secure, fast, and easy to implement software. The proposed algorithm use the fast operating 213-bit arithmetic shift register(ASR) to generate a binary sequence and produce 64-bit stream cipher by using simple logical operation in non linear transform. MS64 supports 128-bit key in encryption algorithm and satisfy with the safety requirement in modern encryption algorithm. In simulation result shows that MS64 is faster than a 32-bit stream cipher SSC2 in the speed of operation with small usage of memory thus MS64 can be used for mobile devices with fast ciphering.