• 제목/요약/키워드: Area Prediction.

검색결과 2,455건 처리시간 0.032초

Prediction of Landslide around Stone Relics of Jinjeon-saji Area (진전사지 석조문화재 주변의 산사태예측)

  • Kim, Kyeong-Su;Lee, Choon-Oh;Song, Young-Suk;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1378-1385
    • /
    • 2008
  • The probability of landslide hazards was predicted to natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analysis results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated, and then the landslides prediction map was made up by use of prediction model considering the effect factors. The susceptibility of stone relics induced by landslides was investigated as the grading classification of occurrence probability using the landslides prediction map. In the landslides prediction map, the high probability area of landslides over 70% of occurrence probability was 3,489m3, which was 10.1% of total prediction area. If landslides are occurred at the high elevation area, the three stories stone pagoda of Jinjeon-saji (National treasure No.122) and the stone lantern of Jinjeon-saji (Treasure No.439) will be collapsed by debris flow.

  • PDF

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • 제9D권6호
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

A Study on the Propagation Prediction Model of Wireless Communication in an Urban Area (도심지 무선통신의 전파예측모델에 관한 연구)

  • 정성한;배성수;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제24권12A호
    • /
    • pp.1883-1890
    • /
    • 1999
  • Wireless communication in an urban area, the accurate prediction of wave propagation characteristics are very important to determine communication service areas, select optimal base-stations, and design cells, etc. The CCIR model is a propagation prediction model using a shadowing by the buildings in an urban area. This model represent the shadowing rate by the means of the effect of shadowing between base-station and mobile unit in a shaped linear plane. But, This one occurred a lot of prediction error because it did not consider that density area by the buildings and terrain configurations by the hill and mountain on Line-Of-Sight. In this thesis, an improved propagation prediction model is proposed to reduce prediction error. We presents a new equation, which is using the SAS. This equation is associated with the shadow height by the buildings that considers the topology and the number of blocks that can affect the building shadow in the Line-Of-Sight. We measure the received electrical field level of base-station that high density area, medium density area, and low density area, and then compare and analysis the result to prediction of CCIR model and proposed model. The result compared with the measurement, the proposed model has the improvement of 9.71dB in a high density area, 9.66dB in a medium density area, and 4.02dB in a low density area better than the CCIR model. The result compared with the measurement, the proposed model has the improvement of 9.71dB in a high density area, 9.66dB in a medium density area, and 4.02dB in a low density area better than the CCIR model.

  • PDF

Assessing Distress Prediction Model toward Jeju District Hotels (제주지역 호텔기업 부실예측모형 평가)

  • Kim, Si-Joong
    • The Journal of Industrial Distribution & Business
    • /
    • 제8권4호
    • /
    • pp.47-52
    • /
    • 2017
  • Purpose - This current study will investigate the average financial ratio of top and failed five-star hotels in the Jeju area. A total of 14 financial ratio variables are utilized. This study aims to; first, assess financial ratio of the first-class hotels in Jeju to establishing variables, second, develop distress prediction model for the first-class hotels in Jeju district by using logit analysis and third, evaluate distress prediction capacity for the first-class hotels in Jeju district by using logit analysis. Research design, data, and methodology - The sample was collected from year 2015 and 14 financial ratios of 12 first-class hotels in Jeju district. The results from the samples were analyzed by t-test, and the independent variables were chosen. This was an empirical study where the distress prediction model was evaluated by logit analysis. This current research has focused on critically analyzing and differentiating between the top and failed hotels in the Jeju area by utilizing the 14 financial ratio variables. Results - The verification result of the accuracy estimated by logit analysis has shown to indicate that the distress prediction model's distress prediction capacity was 83.3%. In order to extract the factors that differentiated the top hotels in the Jeju area from the failed hotels among the 14 chosen, the analysis of t-black was utilized by independent variables. Logit analysis was also used in this study. As a result, it was observed that 5 variables were statistically significant and are included in the logit analysis for discernment of top and failed hotels in the Jeju area. Conclusions - The distress prediction press' prediction capability was compared in this research analysis. The distress prediction press prediction capability was shown to range from 75-85% by logit analysis from a previous study. In this current research, the study's prediction capacity was shown to be 83.33%. It was considered a high number and was found to belong to the range of the previous study's prediction capacity range. From a practical perspective, the capacity of the assessment of the distress prediction model in the top and failed hotels in the Jeju area was considered to be a prominent factor in applications of future hotel appraisal.

Partially Observed Data in Spatial Autologistic Models with Applications to Area Prediction in the Plane

  • Kim, Young-Won;Park, Eun-Ha;Sun Y. Hwang
    • Journal of the Korean Statistical Society
    • /
    • 제28권4호
    • /
    • pp.457-468
    • /
    • 1999
  • Autologistic lattice process is used to model binary spatial data. A conditional probability is derived for the incomplete data where the lattice consists of partially yet systematically observed sites. This result, which is interesting in its own right, is in turn applied to area prediction in the plane.

  • PDF

Adaptive resolution enhancement algorithm using the block size of intra prediction mode (Intra Prediction Mode의 Block Size를 이용한 적응적 해상도 향상 알고리즘)

  • Lee, Si-Mong;Kwon, Yong-Kwang;Won, Chee-Sun
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.793-794
    • /
    • 2008
  • The block size of intra prediction mode can differentiate the texture area from the homogeneous area of image. This information can be used to enhance the size resolution of image. Specifically, in this paper, we apply the bicubic interpolation or the bilinear interpolation adaptively selected the intra prediction mode of the H.264 compression.

  • PDF

Bayes Prediction for Small Area Estimation

  • Lee, Sang-Eun
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.407-416
    • /
    • 2001
  • Sample surveys are usually designed and analyzed to produce estimates for a large area or populations. Therefore, for the small area estimations, sample sizes are often not large enough to give adequate precision. Several small area estimation methods were proposed in recent years concerning with sample sizes. Here, we will compare simple Bayesian approach with Bayesian prediction for small area estimation based on linear regression model. The performance of the proposed method was evaluated through unemployment population data form Economic Active Population(EAP) Survey.

  • PDF

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • 제40권1호
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Analysis of Prediction Results and Grid Size Dependence According to Changes in Fire Area (화원면적 변화에 따른 격자 크기 의존도 및 예측결과 분석)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • 제33권6호
    • /
    • pp.9-19
    • /
    • 2019
  • In fire simulations for building fire safety evaluation, changes in the fire area and grid size can significantly influence the prediction results. Therefore, the effects of area changes of the fire source with identical maximum heat release rates on the prediction results of a compartment fire were investigated. The dependence of the prediction results on the grid size using the identical fire area was also examined. No significant changes were observed in the thermal and chemical characteristics of the fires with variable grid sizes, even though the fire area was changed when six or more grids were set based on the fire diameter. In addition, changes in the fire area caused significant differences in the prediction of major physical quantities associated with available safety egress time (ASET) within a compartment. However, the fire area changes did not considerably influence the overall fire characteristics outside the compartment after reaching a certain distance from the opening.