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Partially Observed Data in Spatial Autologistic
Models with Applications to Area Prediction in the
Plane!

Young-Won Kim, Eun-Ha Choi and Sun Y. Hwang!

ABSTRACT

Autologistic lattice process is used to model binary spatial data. A condi-
tional probability is derived for the incomplete data where the lattice consists
of partially yet systematically observed sites. This result, which is interest-
ing in its own right, is in turn applied to area prediction in the plane.

Keywords: Autologistic Model; Nearest Neighbor; Partially Observed Data; Max-
imum Pseudo Likelihood; Area Prediction.

1. INTRODUCTION

Let {X;;; i=1,---,m,j=1,---,n} denote binary (0,1) random variables
at the sites labelled (i, j) in a two dimensional lattice. Typically, X;; = 0 refers
to characteristic of interest-free and X;; = 1 stands for "contains the charac-
teristic”. The problem of modeling such binary {X;;} has received considerable
attention in the literature in the context of spatial statistics. The applications of
the binary lattice models are commonly encountercd in such diverse fields as ge-
ography, geology and epidemiology. Refer to Cliff and Ord(1975), Haining(1979),
Cressie(1991) and more recently Guyon(1995) among others for the excellent
applications of the binary lattice models. See also Besag(1974) for the compre-
hensive treatments regarding binary models including several auto-models.

We here discuss some topics for the autologistic process which is useful in
modeling binary spatial data. Specifically, this paper is mainly concerned with the
incomplete data where fundamental difficulty lies in the estimation of parameters
involved. This article is organized as follows. Section 2 describes the model and a
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test of independence against clustering. Section 3 is dealing with the interesting
situation where the data are partially observed but in a systematic way, which
will be specified later. An application of results derived in Section 3 to the area
prediction is presented in Section 4 via a simple example,

2. THE MODEL

We consider spatial binary (0, 1) valued process defined on a m xn rectangular
grid in a plane with sites labelled (i, j) where an associated random variable X;;
is well defined at each sites. There have been two main approaches for modeling
binary spatial process: Joint probability approach and Conditional probability
formulation. An excellent review of connections between these two approaches
and some applications are given by Ripley(1981). We here mainly concentrate
on conditional model approach, precisely, discussing autologistic models.

The big question whether the judicious joint probability of all sites exists
when one is modeling through a conditional probability model is affirmatively
answered by Besag(1974) appealing to the famous Hammersley-Clifford theorem.

Consider the set of four observations in the "nearest-neighbor” of the site (i,
j) as

Nij =A{Xit150 Xim1jp Xige, Xig-1} (2.1)

Denoting the sum of elements in N;; by 5;;, viz.,
Sij = X1,y + Xirj + Xijrr + Xija (2.2)

let
P(Xi; | all the rest) = exp[fo + f15;;]/{1 + exp[fo + A1Si;]}  (2.3)

where 3 = (0, /1) is a vector of parameters to be estimated.

Notice that the Markov property is assumed in (2.3) with the nearest neigh-
bor N;; and hence this model is a special member of the first order Markov
random fields in a plane. The binary model specified by (2.1) to (2.3) is usually
called a conditional autologistic model. Pickard(1987) call this Ising model in
the plane. Also, Besag(1974) introduce the term ”Isotropic first-order scheme”
for this model. Pickard(1987) examined in detail this model including various
inferential problems and related asymptotics. Also, Refer to Jain(1981) for the
diverse applications to such disciplines as geography and geology. Further, as
pointed out by Cressie(1991, p.424.), the form (2.3) is a consequence of algebra,
and is not an assumption for modeling binary spatial data.
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We begin by discussing spatial autocorrelations of the model defined by (2.1)
through (2.3). If the presence of some "quality” in neighboring sites makes its
presence in the site more likely, the phenomenon is said to show spatial posi-
tive autocorrelation. It is easily seen from (2.3) that the parameter 1 indicates
"Interaction” between X;; and S;; with independence if and only if 84 = 0. As
p increases from zero, the conditional probability of X;; = 1 given S;; becomes
more likely and hence positive §; measures the tendency of clusters of ones. It
would then be interesting to test for independence .vs. clustering of ones.

Hy : (1= 0 (independence)
Hy @ B1> 0 (clustering of ones) (2.4)

A score-type statistic for testing (2.4) is proposed by Hwang and Basawa(1999)
in a slightly different context where a unilateral variant of the model is obtained
by replacing N;; with .7\7; consisting of observations from ”lower quadrant neigh-
bor” such that

Ny = {Xi-1j, Xic1j-1, Xij-1)

The resulting model is referred to as unilateral conditional autologistic pro-
cess. Adapting the lines of their work to our model one can obtain:

Theorem 2.1. Consider the test ¢(T') based on the score statistic T, given by

¢(T) = I[T > Zoz]

where I stands for the usual indicator function, Zy is used for the upper ¢ per-
centile of N(0,1) and

T = (Xy~X)8;5/[X(1 - X) > (S - §)7)/?
Here X and S denote the averages and the summation is taken over all sites in

the lattice. Then, as the total sample size mn tends to infinity, &(T) is a limiting
size « test for the hypothesis (2.4).

Upon retaining Hp : independence, mn independent Bernoulli random vari-
ables with identical success probabilities comprises the lattice. In this case our
model is of little use. In the remainder of this paper, it will be assumed that
there tends to be clustering of ones, 1.e., 51 > 0.
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3. PARTTALLY OBSERVED DATA

It is often the case in practice that observations of all sites are not available in
hand. Examples of such phenomena are typically two-fold: (1) Data containing
missing values due to noise or degrading. The missing data here usually occur
at random and there is no particular pattern to where there are missing values.
One can accomodate missing data by using smoothing and/or interpolation (ref.
Cressie(1991), Ch. 6). (2) Data consisting of intermittent observations for the
sake of reducing sampling cost, which is the case we are focusing on. For sim-
plicity of discussion, consider the following special pattern of the partially yet
systematically observed data. Denoting by [ - | the observed [unobserved] sites,

respectively, examine the m x n lattice alternatively 7 +” and ”-” |, as in Figure 3.1.
# * #* *
ES * * *
* * * *
* * * *

Figure 3.1 : Partial Observation Scheme
(% : observed site : m=4, n=8)

For the fully observed data from the (spatial) autologistic process, various
methods for estimating 8 = (8p, £1) have been devised: [1] maximum likelihood
(ML) estimation (Gidas(1991)); [2] maximum pseudo likelihood (MPL) estima-
tion (Geman and Graffigne(1987)); [3] Coding method (Besag(1974)). It is worth
indicating that MPL objective function is much easier to handle than ML function
where the likelihood function often contains an intractable and unwieldy normal-
izing constant (see, for instance, Cressie(1991), p. 459-460). The coding method
of Besag can not be directly applicable to the data with incomplete observations.

To employ ML or MPL methods for the incomplete scheme depicted in Figure
3.1, we first need to compute the conditional probability of X;; given the rest sites
with observations. Fix the observed site (z,7) and name the (second) nearest
eight sites shown in Figure 3.2, where ” -7 stands for unobserved sites and (1) =
(i+27 7)s (2) =(+1, j_l)v (3) = (ia j—z)) (4)=0G-1, -1, (5) =
(1—2,7), 6)=(—-1, 7+1), (7=, j+2)and (8) = (:+1, 7+ 1). Denote
by INj; the collection of 8 random variables observed at 8-sites.
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(1)
@ - (8
@ - @ - ™
4 - (6
(5)

Figure 3.2 : Name of the second nearest sites

It follows from the first order Markov property of the spatial autologistic
processes in (2.1) to (2.3) that

P(X;; = 1| rest sites with observations )
= P(Xy=1]|N;)
= Aij7 say (31)

Since S;; in (2.3) takes values 0 to 4, write that for each k=0, 1, 2, 3, 4

wy, = 6(50+51k)/[1 + e(ﬂo-!—ﬁlk)] (32)

Also, let Rj; be the number of the three sites (6), (7) and (8) in the right
hand side in Figure 3.2 that have a value 1, viz.,

R;cj = Xic1j41 + Xijte + Xiprn (3.3)

Similarly, coin the term Lf; for (2),(3) and (4) ; U} for (1),(2) and (8) and
reserve the notation Dj; for the remaining three sites in the down side of Figure
3.2, (4},(5) and(6).

Di= Xic1jo1 + Xi—2j + Xio151 (3.4)

Introduce the notation ai117 and b1111 to denote

(Bo+B1(1+RE,)) elBo+B1(1+L7;))
a1 = 1 4 ot AT RE)) ' 1+ oA (1+L]))
(Bo+BL(1+U)) e(Bo+B1(1+D7;))

14 (BotBiOATE)) Ty (BotB(1+D])) (3.5)
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and
o(Bo+B1RY;) olBo+B1Ly;)
bun = 1+e(ﬂ0+ﬂ1Rfj) - 1 o glPotBiLy)
BotB1U3) o(Bo+p1 D7)

. 1 + ePotB1U) ] + eBo+AL D7) (3-6)

Note that ai111 and byy1; differ only in that for aq1;; one is added in the
multiplication factors appearing in front of 3;.

Now the four subscripts 71”7 in aq11; are replaced by 70” with the understand-
ing that ”0” is substituting (one minus the corresponding factor) into (3.5). For
example, the following notation a1101 gives, by adjusting third term in (3.5)

o(BotB1(1+R)) e(BotB1(1+L;))
a1 = 1 1+ @BotBIO+RG)) ) (BotA(I+LE))
oBotB1(1+U%)) e(PotBr(1+D5;))

(1= 1 +e(ﬂo+ﬂ1(1+U;j))) "] 4 BotAEDE)) (3.7)

The subscripts in by;1; are also handled in analogous way. We are now in a
position to compute A;j in (3.1).

Theorem 3.1. For the pariially observed scheme outlined wn Figures 3.1 and
3.2, the conditional probability of X;; for the observed site (i, j), given the rest
sites with observations, call it Ay;, is given by

D
JAVIIE Y 3.8
1 1 Cij -+ Dij ( )
where
Cij = wgain + ws(enio + a1101 + 21011 + Go111) (3.9)
+ wa(ai1o0 + 1010 + @1001 + o110 + o101 + C0011)
+ wi(a1000 + Go100 + Goo10 + Gooo1) + Wo@oooo
and

Di; = wsbinn + ws(biito + brior + bronn + boinn) (3.10)
+ wa(bi100 + bio1o + br001 + o110 + boro1 + boo11)

+ wiy (b1ooo + boroo + booto + booo1) + woboooo
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Proof: Recall first that the four nearest sites comprise Ni; in (2.1) and Njj in
Figure 3.2 consists of 8 sites for the observed site (i, j). Write that

Aij = P(Xy =1INj) (3.11)
= D P(Xij = 1Njj, Nig = (i1,42,43,44)) - P(Nij = (i1, 72, 13, i) | N3;)

where 1,1%2,%3 and 14 each takes values 0 or 1 ,and the summation runs over all
11,13, ¢3 and 174 , consisting of sixteen terms. It follows from Markov property that

P( ij = 1| 73’ ) = P(Xij = 1lNz_7) (312)

It can also be written as

P(NIJ’N:.;) = ZPNZJI ¥R 1_7‘—'“ P(Xij:’l,L|N;7-) (313)

= P(NU| if7 ZJ_]')'AZ_’I
+P (N N L JZO)'(l_Aij)

Combining (3.11), (3.12) and (3.13), A;; can be expressed as a sum of two
terms,

Ajj=A-Ajy +B-(1-Ay) (3.14)
with
A = ZP(Xij = 1|N;; = (i1, 12,43,14))
P(Nij = (11,42, 13,14) |Njj, Xij = 1)
and

B = ZP Xij = llN'lJ = (i11i2ai3:i4))
P(Nyj = (i1,42,13,14)| N, Xy5 = 0)
where the sum is taken over 16 terms.

It then suffices to show that A = C;; and B = D;;. To proceed further,
it is worth noting that due to the first order Markov property of the model
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conditionally on N7 and Xjj, the four random variables in Nj; are mutually
independent. This in turn implies that

ain = P(Ny; = (1,1, 1L, 1)|Nj, Xy = 1)
and
b = P(Ng; = (1, 1,1, 1)| N}, X35 = 0)

Fully exploiting the notation obtained by substituting zeros for the subscripts
ones in aj111 and by311, and using wy in (3.2) for the weights P(X;; = 1|Ny; =
(41,%2,%3,%4)) appearing in A and B, it can be deduced that A = Cj;and B = Dy;
and hence

which essentially concludes the proof. O

4. AREA PREDICTION IN THE PLANE

Consider the m x n lattice with {X;;} each taking values 0 or 1 and define
the area for the lattice as the number of sites that have a value 1, viz., > X;;
where the sum extends over all sites. Denoting O the collection of all sites with
observations, the area denoted by U can be written as

U= Xij+ Y Xy
) o=

Note that X;; is not observable on the site belonging to O°¢. It is well known
that the MMSE(minimum mean squared error) predictor of a random variable is
given by the conditional expectation. Consequently the MMSE predictor of U,
denoted by fj', is the conditional expectation of U given the data in O,

U= Xi+> X (4.1)
@ Qe

where for the site in OF,

o

Xi; = E(Xijldata in O) (4.2)
E(X;;|Nij) « Markov property
= P(X;; = 1|Ny)
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For X:;, it is the first step to estimate the model parameter 5. To do so, one
may proceed to employ ML or MPL methods for 4. While ML in asymptotic
sense usually provides better estimates than MPL, efficiency of ML over MPL
can be traded for tractability and computational ease (see, Cressie(1991)). For
MPL the pseudo likelihood function, call it PL(3), can be written down in a
compact way

PL(B) = TTA;(B)™ (1~ Ay ()~

where the product is over all sites in O. Let 8 = (Eg, Bl) be obtained by max-
imizing objective function PL(f) with respect to 8. It then follows that for
(4,7) € O°

Xyj = explBo + BrSis)/ (1 + ezplBo + B1Sis)) (4.3)

To see how U works, we perform a simulation study by generating 50 x
30 lattices. Figure 4.1 [4.2] shows a lattice from 8 = (-~1.1,0.1)[(—2.5,1.2)].
MPL method is then applied and in turn yields § = (~1.4, 0.3)[(—2.3,1.1)],
respectively. Plugging these estimates into (4.3) U is easily obtained. In the
context of image analysis, Switzer(1980) proposes to augment the missing values
with the average of the data from the nearest neighbor sites. Adapting the idea
to our case, one can devise another predictor U given by

ﬁzZXij+ZE; (4.4)
0 (ol

where X;; = S;;/4

Both [J and U are readily computable to find that I = 338.05 and U = 333.45
for Figure 4.1(true area=361). Also, in the case of Figure 4.2 (true area=418),
it is obtained that U = 417.09 which is very close to the true value 418, and
U = 409.95. In each case, the proposed U appears to get closer to the true
value. Table 4.1 gives some computations for U and U based on 100 independent
simulations. For each simulation, 50 by 30 lattice is generated and area prediction
errors ( U - true area and U - true area ) are calculated. The mean and the
standard deviation(s.d.) of these 100 errors are listed in Table 4.1. The first
value shown within each cell is the mean over the 100 simulations and s.d. is
entered in the square bracket.
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Table 4.1: Simulated Mean and Standard Deviation of the area prediction errors

(ﬁo, 131) ForU ForU
(-1.1, 0.1) | -0.18[12.17] | -0.35[18.36]
(2.5, 1.2) | 0.11]8.33] | 0.15[15.19]

As can be seen from the table, U dominates U in the sense that U is less
biased and provides a smaller standard deviation. For the proposed U , it seems
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that the s.d. decreases as [3j increases from zero. This makes sense since posi-
tive [3; is associated with the spatial positive autocorrelation, and thus once the
four nearest neighbor sites are observed the ”uncertainty” of the missing value
is clearly getting smaller as (31 increases. As an alternative to MPL, ML can
be used to estimate § in conjunction with a simulation approximation for the
likelihood using MCMC method(cf. Geyer(1992)). We will not however go into
details on ML method since our goal in this section is to provide a new method
for area prediction via spatial autologistic models, rather than to compare various
estimation procedures for 5.
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