• 제목/요약/키워드: Arctic

검색결과 478건 처리시간 0.019초

A Study on the Patchwork in the Costumes of the Arctic Regions

  • Moon, Shin-Ae;Kim, Moon-Sook
    • The International Journal of Costume Culture
    • /
    • 제6권1호
    • /
    • pp.30-37
    • /
    • 2003
  • The most distinctive feature of the costumes of the Arctic regions from Alaska to Siberia centering around the Bering Sea connecting Asia to North America, is that each tribe makes clothes adequate to the climate and their lifestyles with animal hides obtained from hunting in their habitation. Furs or fish skins, the main materials for clothing, are characteristically cut into many pieces, and thus piece-joining patchwork is used to make or decorate garments. Patchwork is the technique that can create new designs with 3-dimensional and various combinations by modifying the simple materials, and also has the advantage of fitting the body without a certain cut line. Therefore, the patchwork found in the Arctic costumes may be developed from folk costume designs with limited materials like fur into new ones for modern or future costumes.

  • PDF

북극지역 대류권계면 기압의 연변화와 변화경향 (Annual Variation and Trends of the Arctic Tropopause Pressure)

  • 최우갑;김혜실
    • 대기
    • /
    • 제20권3호
    • /
    • pp.355-366
    • /
    • 2010
  • The tropopause pressure in the Arctic region is calculated by the conventional thermal and dynamical methods using 30-year reanalysis data. The tropopause pressures determined thermally and dynamically both show semiannual cycles with one peak in April and May, and another in October, contrary to the tropopause temperatures. Although tropopause levels are higher both in January and July, the level of the tropopause in January seems to be associated with the stratospheric temperatures while that of July seems to be associated with the tropospheric temperatures. During the 30-year period the most significant trend appears in April, and it is shown that the altitude of the Arctic tropopause has been rising. Although a potential reason for this trend is stratospheric cooling due to ozone depletion, significant tropospheric warming in April is considered to be another reason.

Isolation of Protease-Producing Arctic Marine Bacteria

  • Lee, Yoo-Kyung;Sung, Ki-Cheol;Yim, Joung-Han;Park, Kyu-Jin;Chung, Ho-Sung;Lee, Hong-Kum
    • Ocean and Polar Research
    • /
    • 제27권2호
    • /
    • pp.215-219
    • /
    • 2005
  • We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Arctic and Subarctic Karst Landforms in North America

  • Oh, Jongwoo
    • 동굴
    • /
    • 제42권2호
    • /
    • pp.7-16
    • /
    • 1995
  • Karst in Arctic and Subarctic region in North America contains a wide variety of surficial karst landform characteristics due to not only extensive glacial activities, but also interglacial karst processes during the Pleistocene age.(omitted)

  • PDF

열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구 (A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms)

  • 배소영;강규홍
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석 (Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches)

  • 황철환;박한규;김윤곤
    • KSBB Journal
    • /
    • 제31권4호
    • /
    • pp.263-269
    • /
    • 2016
  • For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

Soil organic carbon characteristics relating to geomorphology near Vestre Lovénbreen moraine in Svalbard

  • Jung, Ji Young;Lee, Kyoo;Lim, Hyoun Soo;Kim, Hyun-Cheol;Lee, Eun Ju;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • 제37권2호
    • /
    • pp.69-79
    • /
    • 2014
  • Soil organic carbon (SOC) in the Arctic is vulnerable to climate change. However, research on SOC stored in the high Arctic regions is currently very limited. Thus, this study was aimed at understanding the distribution and characteristics of SOC with respect to geomorphology and vegetation in Svalbard. In August 2011, soil samples were collected near the Vestre Lov$\acute{e}$nbreen moraine. Sampling sites were chosen according to altitude (High, Mid, and Low) and differences in levels of vegetation establishment. Vegetation coverage, aboveground biomass, and SOC contents were measured, and density-size fractionation of SOC was conducted. The SOC content was the highest in the Mid site ($126.9mg\;g^{-1}$) and the lowest in the High site ($32.1mg\;g^{-1}$), although aboveground biomass and vegetation coverage were not different between these two sites. The low SOC content measured at the High site could be related to a slower soil development following glacial retreat. On the other hand, the Low site contained a high amount of SOC despite having low vegetative cover and a high ratio of sand particles. These incompatible relationships between SOC and vegetation in the Low site might be associated with past site disturbances such as runoff from snow/glacier melting. This study showed that geomorphological features combined with glacier retreat or melting snow/glacier effects could have affected the SOC distribution and vegetation establishment in the high Arctic.

Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions

  • Sohn, Jung Min;Kim, Sang Jin;Seong, Dong Jin;Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.755-771
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new challenges to the development of the Arctic regions, which have substantial energy resources. And attention to offshore structures has increased with oil and gas development. The structural impact response of an explosion-resistant profiled blast walls normally changes when it operates in low temperatures. The main objectives of this study are to investigate the structural response of blast walls in low temperature and suggest useful guidelines for understanding the characteristics of the structural impact response of blast walls subjected to hydrocarbon explosions in Arctic conditions. The target temperatures were based on the average summer temperature ($-20^{\circ}C$), the average winter temperature ($-40^{\circ}C$) and the coldest temperature recorded (approximately $-68^{\circ}C$) in the Arctic. The nonlinear finite element analysis was performed to design an explosion-resistant profiled blast wall for use in Arctic conditions based on the behaviour of material properties at low temperatures established by performing a tensile test. The conclusions and implications of the findings are discussed.

유한요소해석을 활용한 극한지 융해침하에 따른 천연가스배관의 응력해석 (Stress Analysis of Arctic Thaw Settlement with Gas Pipeline using Finite Element Method)

  • 김경일;염규정;김영표;김우식;오규환
    • 한국가스학회지
    • /
    • 제18권5호
    • /
    • pp.78-84
    • /
    • 2014
  • 최근 비교적 에너지자원 확보가 용이했던 육상의 화석연료가 고갈됨에 따라 이를 확보하기 위한 장소가 육지에서 그 동안 관심을 두지 않았던 극한지로 이동하고 있으며, 극한지 자원 확보를 위한 국가 간의 경쟁이 치열하다. 이러한 극한지 에너지자원 개발 시장을 선점하기 위해서는 국내환경과 상이한 극한지 건설기술 개발이 필수적이다. 극한지 가스배관의 경우 $-40^{\circ}C$에서 $20^{\circ}C$까지의 온도변화에 따라 국내에서 볼 수 없는 외부환경중 하나인 융해침하의 영향을 받게 되는데 이에 맞춰 새로운 해석모델개발이 필요하다. 본 연구에서는 유한요소해석을 활용하여 극한지 가스배관과 융해침하를 모델링하였다. 또한 이 모델에 극한지의 온도에 따른 토양 및 배관의 물성을 부가하고 mohr-coulomb이론을 적용하여 융해침하에 따른 배관이 받는 응력 및 변위에 대해 알아보고자 한다.

태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교 (Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean)

  • 강성호;김현철;하선용
    • Ocean and Polar Research
    • /
    • 제40권4호
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.