• Title/Summary/Keyword: Arc type

Search Result 716, Processing Time 0.036 seconds

A study on the weldability of TMCP steel plates in underwater wet arc welding (TMCP강의 습식수중 아크 용접성에 관한 고찰)

  • 오세규;김민남
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.28-35
    • /
    • 1987
  • The feasibility of underwater wet arc welding process is experimentally investigated by using high titanium oxide type electrodes and TMCP steel plates as base metal. It is assertained the tis process may be put to practical use. Main results are summarized as follows; (1) Sound underwater weld can be obtained by skilled welding operator, if proper welding conditions are selected. (2) In underwater wet arc welding process, the mechanical properties of HAZ are depend upon welding condition and the optimum welding condition can obtained. (3) The maximum hardness in the HAZ of TMCP steel plates is increased significantly in this welding process.

  • PDF

Evalution of Current interrupting capability in GCB by computational approach (전산수치해석을 통한 가스차단기의 차단성능 평가)

  • Choi, Y.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1677-1681
    • /
    • 2002
  • A computational approach of the arc quenching process in GCB was developed. it is capable to calculates the thermodynamic quantities of the gas as a function of time taking into account of all spaces concerned with the arc quenching. Basically using so-called FLIC method, this program adoptes 'Simplified Enthalpy Arc Model', which is somewhat modified. And, to examine whether our works were done properly, it was simulated the whole process of the arc quenching that is based on self-flow generation phenomena/current interruption in a thermal expansion type circuit breaker. This program was verified by experiments, both showed fairly good agreement.

  • PDF

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.

Calculation of Pressure Rise in a Thermal-expansion Type Arc Chamber (열팽창 분사식 가스차단부의 소호실내 압력상승 계산)

  • Choi, Y.K.;Oh, Y.H.;Shin, Y.J.;Park, K.Y.;Kim, H.J.;Choulkov, V.V.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.167-169
    • /
    • 1998
  • Recently $SF_6$ gas circuit breakers utilizing the thermal-expansion principle are increasingly used in distribution power system. Active researches and developments have been conducted to reduce the size and weight, and to improve the interrupting performance of the circuit breakers. It was first developed a programme which could show the hot gas flowing into the thermal-expansion arc chamber. This programme, using so-called FLIC method basically, adopted 'Simplified Enthalpy Arc Model' which was somewhat modified to estimate the arc quenching process. The computation by it was compared with the measured results of the pressure rise in the chamber, and both showed fairly good agreement.

  • PDF

Development of Ceramic Arc-tube by the PIM Process

  • Rhee, Byung-Ohk;Choi, Seung-Chul;Park, Jeong-Shik;Kim, Byoung-Kyu;Kim, Hyung-Soo;Kim, Sang-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.205-206
    • /
    • 2006
  • A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.

  • PDF

A Study of a 150kW plasma torch for current control and arc initiation (150kW급 플라즈마 토치의 전류 제어 및 Arc Initiation에 관한 연구)

  • Han, Chul-Woo;Hyun, Dong-Gi;Park, Sang-Hoon;Hwang, Lee-Ho;Rhee, Byong-Ho;Na, Jae-Jeong;Moon, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1496-1497
    • /
    • 2007
  • This paper deals with the power system development of an arc plasma torch for current control and arc initiation. For stable output of a plasma torch, there are ways of supplying gas suitably, a plasma torch initiation and control system which can control desired output. The design of plasma torch is form of modified Huels type which has narrow downstream. This paper we product suitable feeder of power system and we can control stably in considering many work conditions.

  • PDF

Estimating factor for Improving Arc Extinction Capability of DC Magnetic Switch (직류전자 접촉기의 아크 소호력 향상 요인 추정)

  • Cho, Hyun-Kil;Lee, Eun-Woong;Kim, Kil-Soo;Kim, Gyun-Muk;Lim, Su-Saeng;Kim, Jun-Ho;Ryu, Jong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.18-20
    • /
    • 2001
  • This paper describes are quenching chambers of three type for Magnetic Switch and analyzes electromagnetic blowout force acting on the arc using 3D finite element method we make prototype device of each model and establish characteristics of arc quenching by measuring arcing time. This paper compares electromagnetic blowout to inverse arcing time. As the result this proposes the improving method for arc quen performance in DC magnetic switch.

  • PDF

Analysis and Experiment of the Pressure Rise in Switchgear of Arc Fault (Arc Fault에 의해 발생되는 배전반 내부의 압력변화에 대한 전산해석 및 실험적 연구)

  • Lim, Nam-Hyuk;Min, B.S.;Kim, J.Y.;Park, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1171-1176
    • /
    • 2004
  • To develop and improve a switchgear, the prediction of the pressure rising within the switchgear is very important. This study investigates the pressure rising characteristics of switchgear in order to evaluate the result of arc fault test. The pressure rising time at the four points of measurement calculated by CFD is well accord with the experimental results. The maximum pressure within the switchgear estimated by CFD is about 1.0bar, the pressure from experiment is 0.7 bar. The results of this study are able to be used to improve the performance of existing switchgear and to develop a new type switchgear.

  • PDF

Preceding Study on the Sensing Part of Level Measurement System of Launch Vehicle Propellant Tanks (발사체 탱크 추진제 수위 측정시스템 감지부 선행연구)

  • Shin, Dong-Sun;Lee, Eung-Shin;Ko, Hyun-Seok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.54-57
    • /
    • 2009
  • The propellant level measurement system of the next Koreanized launch vehicle shall adapt a capacitive type sensor, which can generate capacitive values continuously considering cryogenic environment and the characteristics of flowrate control. At present there are a twin-arc and a triple-arc methods as a capacitive type signal sensing method. In this study a highly accurate triple-arc method, which can apply to almost all fluids, is chosen. In this paper the review results on the principle of triple-arc sensing, the analysis results on the influence on capacitive values due to shape change of sensing part, and the simulation results to monitor the influence on signal sensing according to the location of sensing part in the upper part of propellant tank are included. Information obtained from this study can be used in the designing and manufacturing of on-board propellant level measurement system in tanks.

  • PDF

A Study on the Characteristics of Silicon Nanopowders Produced by Transferred Type Arc Plasma Apparatus (이송식 아크플라즈마 장치에 의해 제조된 실리콘 나노분말의 특성에 대한 연구)

  • Kan, Woo-Seop;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.909-917
    • /
    • 2021
  • This study was carried out experimentally on the production and properties of silicon nanopowders characteristics using a transferred type arc plasma apparatus. To investigate the properties of silicon nanopowder, the purity of argon gas(99.999%, 99.9%) and the partial pressure ratio of nitrogen gas(0~90%) were varied. The total pressure in chamber is 400Torr and the silicon chunk amount used as raw material is 300g. The power supplied to the cathode to generate arc plasma was 9~12kW/h, and the electrode was made of tungsten and graphite with a diameter of 13mm. The particle size, impurity elements and powder evaporation rate of the silicon powder were analyzed using the XRD, FE-SEM, TEM and electronic scale. According to the purity of argon gas, the silicon evaporation rate and the particle size were similar, and impurities were generated more in the case of 99.9% purity than 99.999%. When argon gas and nitrogen gas were mixed in the chamber, the silicon evaporation rate and particle size increased as the partial pressure ratio of nitrogen gas increased. In particular, when the partial pressure ratio of nitrogen gas was 80%, the silicon evaporation rate 80g/h, and the particle size was about 80~100nm.