• Title/Summary/Keyword: Arabidopsis thaliana

Search Result 348, Processing Time 0.027 seconds

Genetic mapping and sequence analysis of Phi class Glutathione S-transferases (BrGSTFs) candidates from Brassica rapa

  • Park, Tae-Ho;Jin, Mi-Na;Lee, Sang-Choon;Hong, Joon-Ki;Kim, Jung-Sun;Kim, Jin-A;Kwon, Soo-Jin;Zang, Yun-Xiang;Park, Young-Doo;Park, Beom-Seok
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.265-274
    • /
    • 2008
  • Glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family divided into Phi, Tau, Theta, Zeta, Lambda and DHAR classes on the basis of sequence identity. The Phi(F) and Tau(U) classes are plant-specific and ubiquitous. Their roles have been defined as herbicide detoxification and responses to biotic and abiotic stresses. Fifty-two members of the GST super-family were identified in the Arabidopsis thaliana genome, 13 members of which belong to the Phi class of GSTs (AtGSTFs). Based on the sequence similarities of AtGSTFs, 11 BAC clones were identified from Brassica rapa. Seven unique sequences of ORFs designated the Phi class candidates of GST derived from B. rapa (BrGSTFs) were detected from these 11 BAC clones by blast search and sequence alignment. Some of BrGSTFs were present in the same BAC clones indicating that BrGSTFs could also be clustered as usual in plant. They were mapped on B. rapa linkage group 2, 3, 9 and 10 and their nucleotide and amino acid sequences were highly similar to those of AtGSTFs. In addition, in silico analysis of BrGSTFs using Korea Brassica Genome Project 24K oligochip and microarray database for cold, salt and drought stresses revealed 15 unigenes to be highly similar to AtGSTFs and six of these were identical to one of BrGSTFs identified in the BAC clones indicating their expression. The sequences of BrGSTFs and unigenes identified in this study will facilitate further studies to apply GST genes to medical and agriculture purposes.

Characterization of the Gene Encoding Radish (Raphanus sativus L.) PG-inhibiting Protein

  • Hwang, Byung-Ho;Kim, Hun;Lim, Sooyeon;Han, NaRae;Kim, Jongkee
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.299-307
    • /
    • 2013
  • A radish (Raphanus sativus L.) polygalacturonase-inhibiting protein (PGIP) gene was cloned and compared to the PGIP gene (BrPGIP2) from Chinese cabbage (Brassica rapa ssp. pekinensis) in order to gain more information on controlling a disease and improving produce quality. To clone the radish PGIP gene, primers were designed based on conserved sequences of two PGIP genes (BnPGIP1 and BnPGIP2) from rape (B. napus L. ssp. oleifera), Chinese cabbage and Arabidopsis thaliana. PCR cloning was performed with cDNA from the stigma of radish 'Daejinyeoreum' as a template to confirm DNA fragments which were about 600 base pair in size. Sequence analysis revealed 84.1% homology with BrPGIP2 and 70.1% with BnPGIP1. DNA walking was conducted to confirm the open reading frame of 972 bp, and the gene was named RsPGIP1. RsPGIP1 consisting with 323 amino acids (aa) has a high leucine content (54/323) and contains 10 leucine-rich repeat domains, as do most BrPGIPs of Chinese cabbage. The gene expression of RsPGIP1 was induced by abiotic stresses and methyl jasmonate. It showed enrichment in the stigma and the primary root than a leaf. Cloning RsPGIP1 will aid to further apply practices on postharvest quality maintenance and disease control of the root.

Functional Expression of Nicotiana tabacum Acetolactate Synthase Gene in Escherichia coli

  • Kim, Hyun-Ju;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 1995
  • Acetolactate synthase (ALS, EC 4.1.3.18) is the first common enzyme in the biosynthesis of leucine, isoleucine, and valine. It is the target enzyme for several classes of herbicides, including the sulfonylureas, the imidazolinones, the triazolopyrimidines, the pyrimidyl-oxy-benzoates and the pyrimidyl-thio-benzens. The sulfonylurea-resistant ALS gene (SurB) from Nicotiana tabaccum [Lee et al. (1988) The EMBO J. 7, 1241-1248] was cloned into the bacterial expression plasmid pT7-7. The resulting recombinant plasmid pT7-ALS was used to transform an ALS-deficient Escherichia coli strain MF2000. MF2000 cells transformed with pT7-ALS grew in the absence of valine and isoleucine. ALS activities of 0.042 and 0.0002 ${\mu}mol/min/mg$ protein were observed in the crude extracts prepared from MF2000 cells transformed with plasmids pT7-ALS and pT7-7, respectively. In addition, the former crude extract containing mutant ALS was insensitive to inhibition by K11570, a new chemical class of herbicides. $IC_{50}$ values for K11570 were $0.13{\pm}0.01$ mM. For comparison, a plasmid pTATX containing the wild-type Arabidopsis thaliana ALS coding sequences was also expressed in MF2000. ALS activities of 0.037 ${\mu}mol/min/mg$ protein were observed, and the wild type ALS was sensitive to two different classes of herbicides, K11570 and ALLY, a sulfonylurea. $IC_{50}$ values for K11570 and ALLY were $0.63{\pm}0.07$ and $80{\pm}5.6$ nM, respectively. Thus, the results suggest that the sulfonylurea-resistant tobacco ALS was functionally expressed in the bacteria, and that K11570 herbicides bind to the regulatoty site of ALS enzymes.

  • PDF

Molecular Cloning and Characterization of ${\gamma}-tocopherol$ Methyltransferase cDNA from Perilla frutescens (들깨 ${\gamma}-tocopherol$ methyltransferase cDNA 유전자의 분리 및 특성)

  • Hwang, Seon-Kap;Kim, Dong-Hern;Lee, Jai-Youl;Kim, Young-Hwan;Hwang, Young-Soo;Kim, Kyung-Hwan
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.203-206
    • /
    • 2002
  • ${\gamma}-Tocopherol$ methyltransferase (TMT) is an enzyme catalyzing ${\gamma}-tocopherol$ into ${\alpha}-tocopherol$ at the final step of ${\alpha}-tocopherol$ synthesis pathway. Putative TMT cDNA clone specific to Perilla frutescens immature seeds was isolated from cDNA library. The cDNA clone consisted of 1369 bp open reading frame encoding 369 amino acids with a relative Mw of 42 kDa. Results revealed the CDNA has 60% homology to Arabidopsis thaliana TMT, and possesses methyltransferase and S-adenosyl methionine-binding domains, suggesting that cDNA encodes a ${\gamma}-tocopherol$ methyltransferase To characterize the properties of the TMT gene, the cDNA sequences coding for mature TMT were expressed in E. coli and assayed to determine the enzyme activity in vitro.

Identification and Functional Characterization of the GALACTINOL SYNTHASE (MoGolS1) Gene in Melissa officinalis Plants

  • Kim, Jun-Hyeok;Hossain, Acktar Mohammad;Kim, Na-Hyun;Lee, Dong-Ho;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.244-251
    • /
    • 2011
  • Galactinol and rafinose accumulation in plants is associated with stressful environmental conditions such as cold, heat, or dehydration by the action of galactinols synthase (GolS) in the raffinose family of oligosaccharides biosynthetic pathway from UDP-galactose. Moreover, several reports mentioned that GolS transcription is up regulated by various environmental stresses like cold, heat, dehydration. Therefore, to determine whether MoGolS1 was induced with the abiotic stress we analyzed the expression pattern of the gene under various abiotic stresses like heat, cold, abscisic acid, sucrose and salt concentration in the lemon balm plants grown in standard MS medium. The MoGolS1 gene was 981-bp in length encoding 326 amino acids in its sequence and shared 77 and 76% sequence similarity with Arabidopsis thaliana galactinol synthase4 (AtGolS4) and AtGolS1 genes respectively. The MoGolS1 gene was strongly expressed by the abiotic stress induced by sucrose, ABA or heat shock. It was also expressed in responses to cold, Identification and Functional Characterization of the GALACTINOL SYNTHASgene induction with various stresses may be possible for itscrucial function in abiotic stress tolerance in plants, providing a good engineering target for genetic engineering.

Exploring Responses to Light in the Monocot Model Plant, Brachypodium distachyon

  • Tran, Quynh-Giao;Han, Yun-Jeong;Hwang, Ok-Jin;Hoang, Quyen T.N.;Kim, Jeong-Il
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.522-530
    • /
    • 2018
  • Brachypodium distachyon has been developed as a monocot model plant for temperate grasses and bioenergy crops. Although B. distachyon research is moving forward rapidly, the study of photoresponses has not been explored. To extend our knowledge of responses to light in monocots, we performed photoresponse analysis of B. distachyon using two inbred lines, Bd21 and Bd21-3. In this study, we first compared growing phenotypes between the two lines and investigated coleoptile and primary leaf growths under dark, far-red, red, and white light conditions. The results showed that the growth of the two lines were similar until tillering stage, but other developmental stages from heading to senescence were much delayed in Bd21-3, which resulted in increased height and tiller numbers. Under different light conditions, primary leaf lengths were kept increasing during the growth period, whereas the coleoptile extension was inhibited 4 to 7 days after growth depending on the light conditions applied. These results suggest that the responses to light in B. distachyon can be examined by measuring coleoptile lengths approximately 7 days after seedling growth. Moreover, we selected light-responsive genes known in Arabidopsis thaliana, such as chlorophyll A/B binding protein (CAB), light-harvesting chlorophyll binding protein (Lhcb) and chalcone synthase (CHS), and confirmed their light-induced gene expression in B. distachyon. Therefore, the present study suggests that the inhibition of coleoptile growth can be used as the parameter to analyze photoresponses in the monocot model plant, and also provide the reference genes whose expression is induced by far-red and red light treatment.

Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

  • Seo, Eun-Young;Nam, Jiryun;Kim, Hyun-Seung;Park, Young-Hwan;Hong, Seok Myeong;Lakshman, Dilip;Bae, Hanhong;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The multifunctional triple gene block protein 1 (TGB1) of the Potexvirus Alternanthera mosaic virus (AltMV) has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta' chain subunit (ATP synthase delta'), light harvesting chlorophyll-protein complex I subunit A4 (LHCA4), chlorophyll a/b binding protein 1 (LHB1B2), chloroplast-localized IscA-like protein (ATCPISCA), and chloroplast ${\beta}$-ATPase. However, chloroplast ${\beta}$-ATPase interacts only with $TGB1_{L88}$, and not with weak silencing suppressor $TGB1_{L88}$. This selective interaction indicates that chloroplast ${\beta}$-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast ${\beta}$-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV $TGB1_{L88}$ but not AltMV $TGB1_{L88}$, suggesting that ${\beta}$-ATPase selectively responded to $TGB1_{L88}$ to induce defense responses.

Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach

  • Zhang, Ning;Si, Huai-Jun;Wen, Gang;Du, Hong-Hui;Liu, Bai-Lin;Wang, Di
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = -2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4-0.9 cm and fresh weight per plant increased by 17-29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

Transcriptome analysis, microsatellite marker information, and orthologous analysis of Capsicum annuum varieties

  • Ahn, Yul-Kyun;Karna, Sandeep;Kim, Jeong-Ho;Lee, Hye-Eun;Kim, Jin-Hee;Kim, Do-Sun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.311-316
    • /
    • 2016
  • The efficacy of plant breeding has been enhanced by application of molecular markers in population screening and selection. Pepper (Capsicum annuum L.) is a major staple crop that is economically important with worldwide distribution. It is valued for its spicy taste and medicinal effect. The aim of this study was to discover single nucleotide polymorphisms (SNPs), microsatellite markers information, and percentage sharing through orthologous analysis of pepper-specific pungency-related genes. Here, we report the results of transcriptome analysis and microsatellite markers for four pepper varieties that possess a pungency-related gene. Orthologous analyses was performed to identify species-specific pungency-related genes in pepper, Arabidopsis thaliana L., potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). Advancements in next-generation sequencing technologies enabled us to quickly and cost-effectively assemble and characterize genes to select molecular markers in various organisms, including pepper. We identified a total of 9762, 7302, 8596, and 6886 SNPs for the four pepper cultivars Blackcluster, Mandarine, Saengryeg 211, and Saengryeg 213, respectively. We used 454 GS-FLX pyrosequencing to identify microsatellite markers and tri-nucleotide repeats (54.4%), the most common repeats, followed by di-, hexa-, tetra-, and penta-nucleotide repeats. A total of 5156 (15.9%) pepper-specific pungency-related genes were discovered as a result of orthologous analysis.