DOI QR코드

DOI QR Code

Transcriptome analysis, microsatellite marker information, and orthologous analysis of Capsicum annuum varieties

  • Ahn, Yul-Kyun (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Karna, Sandeep (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Jeong-Ho (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Hye-Eun (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Jin-Hee (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Do-Sun (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2016.07.26
  • Accepted : 2016.08.17
  • Published : 2016.09.30

Abstract

The efficacy of plant breeding has been enhanced by application of molecular markers in population screening and selection. Pepper (Capsicum annuum L.) is a major staple crop that is economically important with worldwide distribution. It is valued for its spicy taste and medicinal effect. The aim of this study was to discover single nucleotide polymorphisms (SNPs), microsatellite markers information, and percentage sharing through orthologous analysis of pepper-specific pungency-related genes. Here, we report the results of transcriptome analysis and microsatellite markers for four pepper varieties that possess a pungency-related gene. Orthologous analyses was performed to identify species-specific pungency-related genes in pepper, Arabidopsis thaliana L., potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). Advancements in next-generation sequencing technologies enabled us to quickly and cost-effectively assemble and characterize genes to select molecular markers in various organisms, including pepper. We identified a total of 9762, 7302, 8596, and 6886 SNPs for the four pepper cultivars Blackcluster, Mandarine, Saengryeg 211, and Saengryeg 213, respectively. We used 454 GS-FLX pyrosequencing to identify microsatellite markers and tri-nucleotide repeats (54.4%), the most common repeats, followed by di-, hexa-, tetra-, and penta-nucleotide repeats. A total of 5156 (15.9%) pepper-specific pungency-related genes were discovered as a result of orthologous analysis.

Keywords

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Van Deynze A (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571 https://doi.org/10.1186/1471-2164-13-571
  3. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910-918 https://doi.org/10.1111/j.1365-313X.2007.03193.x
  4. Bosland PW, Votava EJ (2000) Peppers: Vegetable and Spice Capsicums. Crop Production Science in Horticulture Series Series No. 12, CABI Publishing, United Kingdom
  5. Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7:272 https://doi.org/10.1186/1471-2164-7-272
  6. Edwards KJ, Barker JH, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758-760
  7. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435-445
  8. Fitch DH (2000) Evolution of "rhabditidae" and the male tail. J Nematol 32:235-244
  9. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity (Edinb) 101:5-18 https://doi.org/10.1038/hdy.2008.35
  10. Kayser M, Kittler R, Erler A, Hedman M, Lee AC, Mohyuddin A, Mehdi SQ, Rosser Z, Stoneking M, Jobling MA, Sajantila A, Tyler-Smith C (2004) A comprehensive survey of human Y-chromosomal microsatellites. Am J Hum Genet 74: 1183-1197 https://doi.org/10.1086/421531
  11. Kim HJ, Baek KH, Lee SW, Kim J, Lee BW, Cho HS, Kim WT, Choi D, Hur CG (2008a) Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biol 8:101 https://doi.org/10.1186/1471-2229-8-101
  12. Kim KS, Ratcliffe ST, French BW, Liu L, Sappington TW (2008b) Utility of EST-derived SSRs as population genetics markers in a beetle. J Hered 99:112-124 https://doi.org/10.1093/jhered/esm104
  13. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sorensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270-278 https://doi.org/10.1038/ng.2877
  14. Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619-627 https://doi.org/10.1007/s00122-003-1467-x
  15. Lee Y, Sultana R, Pertea G, Cho J, Karamycheva S, Tsai J, Parvizi B, Cheung F, Antonescu V, White J, Holt I, Liang F, Quackenbush J (2002) Cross-referencing eukaryotic genomes: TIGR Orthologous Gene Alignments (TOGA). Genome Res 12:493-502 https://doi.org/10.1101/gr.212002
  16. Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 8:e48156 https://doi.org/10.1371/journal.pone.0048156
  17. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in capsicum and the evolution of genome structure in the solanaceae. Genetics 152:1183-1202
  18. Luo XJ, Peng J, Li YJ (2011) Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol 650:1-7 https://doi.org/10.1016/j.ejphar.2010.09.074
  19. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380 https://doi.org/10.1038/nature03959
  20. Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797-810 https://doi.org/10.1007/BF00212605
  21. Mimura Y, Inoue T, Minamiyama Y, Kubo N (2012) An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed Sci 62:93-98 https://doi.org/10.1270/jsbbs.62.93
  22. Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541-2555
  23. Novaes E, Drost DR, Farmerie WG, Pappas GJ, Jr., Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312 https://doi.org/10.1186/1471-2164-9-312
  24. Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MC, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391-404 https://doi.org/10.1111/j.1365-313X.2007.03244.x
  25. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera- Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 111:5135-5140 https://doi.org/10.1073/pnas.1400975111
  26. Robinson AJ, Love CG, Batley J, Barker G, Edwards D (2004) Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 20:1475-1476 https://doi.org/10.1093/bioinformatics/bth104
  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386
  28. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6:e21298 https://doi.org/10.1371/journal.pone.0021298
  29. Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lubberstedt T, Asp T (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 13:140 https://doi.org/10.1186/1471-2164-13-140
  30. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441-1452 https://doi.org/10.1101/gr.184001
  31. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78-84 https://doi.org/10.1093/nar/gkv487
  32. Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley SD (2008) Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 180:391-408 https://doi.org/10.1534/genetics.108.087981
  33. Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32-42 https://doi.org/10.1104/pp.107.096677
  34. Weber JL (1990) Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7:524-530 https://doi.org/10.1016/0888-7543(90)90195-Z
  35. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407-1420 https://doi.org/10.1534/genetics.106.062455
  36. Yu JN, Won C, Jun J, Lim Y, Kwak M (2011) Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer Hydropotes inermis argyropus. PLoS One 6:e26933 https://doi.org/10.1371/journal.pone.0026933
  37. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193-208 https://doi.org/10.3732/ajb.1100394