• Title/Summary/Keyword: Ar/$CF_4$

Search Result 144, Processing Time 0.026 seconds

The Surface Damage of SBT Thin Film Etched in Cl2CF4/Ar Plasma (Cl2CF4/Ar 유도결합 플라즈마에 의해 식각된 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.570-575
    • /
    • 2002
  • $SrBi_2Ta_2O_9$ thin films were etched in $Cl_2/CF_4/Ar$ inductively coupled plasma (ICP). The maximum etch rate was 1300 ${\AA}/min$ at 900 W ICP power in Cl$_2$(20%)/$CF_4$(20%)/Ar(60%). As RF source power increased, radicals (F, Cl) and ion ($Ar^+$) increased. The influence of plasma induced damage during etching process was investigated in terms of P-E hysteresis loops, chemical states on the surface, surface morphology and phase of X-ray diffraction. The chemical states on the etched surface were investigated with X-ray spectroscopy and secondary ion mass spectrometry. After annealing $700^{\circ}C$ for 1 h in $O_2$ atmosphere, the decreased P-E hysteresises of the etched SBT thin films in Ar and $Cl_2/CF_4/Ar$ plasma were recovered.

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

Study on the Etching Profile and Etch Rate of $SiO_2/Si_3N_4$ by Ar Gas Addition to $CF_4/O_2$ Plasma ($CF_4/O_2$ Plasma에 Ar첨가에 따른 $SiO_2/Si_3N_4$ 에칭 특성 변화)

  • Kim, Boom-Soo;Kang, Tae-Yoon;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.127-128
    • /
    • 2009
  • CCP방식의 식각에 있어서 CF4/O2 Plasma Etch에 Ar을 첨가함으로써 Etch특성이 어떻게 변화하는지를 조사하였다. FE-SEM를 이용하여 Etch Profile를 측정하였다. 또한 Elipsometer와 Nanospec을 이용하여 Etch rate를 측정하였다. Ar의 비율이 전체의 47%정도를 차지하였을 때까지 Etch Profile이 향상되었다가 그이후로는 다시 감소하는 것을 볼 수 있었다. Ar을 첨가할수록 etch rate은 계속 향상되었다. Ar을 첨가하는 것은 물리적인 식각으로 반응하여 Etch rate의 향상과 적정량의 Ar을 첨가했을 때 Etch profile이 향상되는 결과를 얻었다.

  • PDF

A Study on Etching Characteristics of PZT thin films in $CF_4/Cl_2/Ar$ High Density Plasma ($CF_4/Cl_2/Ar$ 고밀도 플라즈마를 이용한 PZT 박막의 식각 특성에 관한 연구)

  • Kang, Myoung-Gu;Kim, Kyoung-Tae;Kim, Tae-Hyung;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1512-1514
    • /
    • 2001
  • In this work, PZT thin films were etched as a function of $Cl_2$/Ar and additive $CF_4$ into $Cl_2$(80%)/Ar(20%). The etch rates of PZT films were 1600 $\AA$/min at $Cl_2$(80%)/Ar(20%) gas mixing ratio and 1973 $\AA$/min at 30% additive $CF_4$ into $Cl_2$(80%)/Ar(20%). Therefore the etch rate of PZT in $CF_4/Cl_2/Ar$ plasma is faster than in $Cl_2$/Ar. From XPS and SIMS analysis, metal halides and C-O, FCI and $CClF_2$ were detected. The etching of PZT films in Cl-based plasma is primarily chemically assisted ion etching and the remove of nonvolatile etch byproducts is the dominant step. Consequently, we suggest that the increase of Cl radicals and the volatile oxy-compound such as $CO_y$ are made by adding $CF_4$ into $Cl_2$/Ar plasma. Therefore, the etch rate of PZT in $CF_4/Cl_2/Ar$ plasma is faster than in $Cl_2$/Ar. The etched profile of PZT films was obtained above 70$^{\circ}$ by the SEM micrograph.

  • PDF

Electron Mean Energy in CF4, CH4, Ar mixtures (CF4, CH4, Ar 혼합기체의 전자 평균에너지)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

Etching Characteristics of Gold Thin Films using Inductively Coupled CF4/CI2/Ar Plasma (CF4/CI2/Ar유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • 김창일;장윤성;김동표;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.564-568
    • /
    • 2003
  • The etching of Au thin films have been performed in an inductively coupled CF$_4$/Cl$_2$/Ar plasma. The etch rates were measured as CF$_4$ contents added from 0 to 30 % to Cl$_2$/Ar plasma, of which gas mixing ratio was fixed at 20%. Other parameters were fixed at an rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of 3$0^{\circ}C$. The highest etch rate of the Au thin film was 3700 $\AA$m/min at a 10% additive CF$_4$ into Cl$_2$/Ar plasma. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. XPS analysis indicated that Au reacted with Cl and formed Au-Cl, which is hard to remove on the surface because of its high melting point. The etching products could be sputtered by Ar ion bombardment.

Etching Characteristics BST Thin Film in $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마에 의한 BST 박막 식각 특성)

  • 김동표;김창일;서용진;이병기;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.866-869
    • /
    • 2001
  • In this study, (Ba,Sr)TiO$_3$(BST) thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP). Etching characteristics of BST thin films including etch rate and selectivity were evaluated as a function of the etching parameters such as gas mixing ratio, rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 1700 $\AA$/min at Ar(90)/CF$_4$(10), 600 W/350 V and 5 mTorr. The selectivity of BST to PR was 0.6, 0.7, respectively. To analyze the composition of surface residue remaining after the etching, samples etched with different CF$_4$/Ar gas mixing ratio were investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). From the results of XPS and SIMS, there are chemical reaction between Ba, Sr, Ti and C, F radicals during the etching and remained on the surface.

  • PDF

Etching Characteristics of $SrBi_{2}Ta_{2}O_{9}$ Thin Film with Adding $Cl_2$ into $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마 내 $Cl_2$첨가에 의한 $SrBi_{2}Ta_{2}O_{9}$ 박막의 식각 특성)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.714-719
    • /
    • 2001
  • SrBi$_2$Ta$_2$$O_{9}$ thn films were etched in inductively coupled Cl$_2$/CF$_4$/Ar plasma. THe maximum etch rate was 1060 $\AA$/min at a Cl$_2$/(Cl$_2$+CF$_4$+Ar)=0.2. The 20% additive Cl$_2$ into CF$_4$/Ar plasma decreased carbon and fluorine radicals, but increased Cl radicals. Sr was effectively removed by reacting with Cl radical because the boiling point of SrCl$_2$(125$0^{\circ}C$) is lower than that of SrF$_2$(246$0^{\circ}C$). The chemical reactions on the etched surface were studied with x-ray photoelectron spectroscopy and secondary ion mass spectrometry. The etching profile was evaluated by using scanning electron microscopy.y.

  • PDF

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.