• Title/Summary/Keyword: Aqueous solutions

Search Result 1,216, Processing Time 0.025 seconds

Cellular Iron Uptake from Aqueous Solutions depending on Reaction Conditions by genetically engineered Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae에 있어서 반응조건에 따른 수용성 철의 생체 흡수)

  • Kim Sang-Jun;Chang Yu-Jung;Park Chung-Ung;Jeong Yong-Seob;Kim Kyung-Suk
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.441-445
    • /
    • 2004
  • Cellular iron uptake was performed in the yeast Saccharomyces cerevisiae that transformed with human ferritin H- and L-chain genes. The recombinant yeasts were enriched in YEP medium supplemented with $2\%$ galactose for 3 days and the iron uptake was followed by incubating the cells with iron in 20 mM MOPS buffer (pH 6.5). The reactions were examined under different conditions including the iron compounds of Fe(II) and Fe(III), the concentration of iron, the concentration of cells and the reaction time. From our results, the recombinant yeast YGH2 producing H-chain ferritin showed higher cellular iron concentration at the cell concentration of 100 mg/ml than 200 mg/ml. Iron presented as Fe(II) rather than Fe(III) was taken up more efficiently. Iron uptake increased slightly when iron was added up to 14.3 mM Fe(II) and then its cellular iron concentration was $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt. In addition, the iron uptake reaction reached to maximum at about 2 hr incubation.

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Thermal Stability of the Major Color Component, Cyanidin 3-glucoside, from a Korean Pigmented Rice Variety in Aqueous Solution (한국산 유색미의 주요성분인 Cyanidin 3-glucoside의 수용액에서의 열안정성)

  • Jo, Man-Ho;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.245-248
    • /
    • 1996
  • Thermal stability of the major color component, cyanidin 3-glucoside, isolated from Korean pigmented rice (Oryza sativa var. Suwon 415) were investigated to explore possible application of value-added natural colors as food additives. The anthocyanin showed red and blue color with maximum absorption peaks at 511 nm and 572 nm in acidic (pH 2.0) and alkaline (pH 9.0) buffer solutions, respectively, and the thermal degradation reactions were carried out with different temperature ranges at $50{\sim}95^{\circ}C$. Degree of degradation was determined with UV/Vis spectra which indicate characteristic absorption patterns with sharp isosbestic points at 350 nm (pH 2.0), and 275, 310, and 405 nm (pH 9.0). Thus the reaction follows simple first-order kinetics. The anthocyanin was very stable against heat at acidic pH and relatively stable at alkaline pH with half-life values of 50.3 hr and 0.6 hr at $70^{\circ}C$, respectively. The activation energies and Arrhenius frequency factors of the pigment were 26.9 kcal $mol^{-1}\;and\;6.0{\times}10^{11}\;s^{-1}$, at pH 2.0, and 15.2 kcal $mol^{-1}\;and\;1.4{\times}10^{6}\;s^{-1}$, pH 9.0, and respectively.

  • PDF

Solvent Extraction Separation of Co(II) and Ni(II) from Weak Hydrochloric Acid Solution with Ionic Liquids Synthesized from Organophosphorus Acids (유기인산계 추출제로 합성한 이온성액체에 의한 묽은 염산용액에서 코발트(II)와 니켈(II)의 추출분리)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.55-63
    • /
    • 2020
  • In order to investigate the separation of Co(II) and Ni(II) by ionic liquids from weak hydrochloric acid solutions, extraction experiments were performed by changing the type and concentration of ionic liquids and the initial pH of the aqueous phase. Two kinds of ionic liquids based on Aliquat 336 were employed in this work; one was synthesized by reacting organophosphorus acids(D2EHPA, PC88A, Cyanex 272, Cyanex 301) with Aliquat 336 and the other was prepared by exchanging the chloride ion of Aliquat 336 with SCN-. The three types of ionic liquids (ALi-D2, ALi-PC, and ALi-CY272) showed better extraction of Co(II) than Ni(II), and the equilibrium pH was higher than the initial pH. In the case of ALi-CY301, the selectivity of Co(II) and Ni(II) depended on the extraction conditions. In addition, the effect of the addition of TBP to the ionic liquid on the extraction of two metals was also investigated. Employment of ALi-SCN as an extractant resulted in selective extraction of Co(II) and complete separation of the two metal ions was possible.

Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties (설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질)

  • Koo, Ja-Sung;Cha, Jae-Ryung;Oh, Se-Heang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at $37^{\circ}C$ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.

Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds (붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.670-676
    • /
    • 2018
  • Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide ($CO_{peak}$) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.

Preparation of calcium phosphates by hydrothermal synthesis route (수열합성법에 의한 calcium phosphates 분말합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.203-207
    • /
    • 2019
  • Calcium phosphates such as hydroxyapatite (HAp), tricalcium phosphate (${\beta}$-TCP), and biphasic calcium phosphate (BCP, HAp/${\beta}$-TCP) have been prepared via hydrothermal treatment. The synthesis was conducted by reacting ($Ca(OH)_2$) aqueous solution with phosphoric acid ($H_3PO_4$) under different hydrothermal synthesis conditions (temperatures up to $150^{\circ}C$ and pH lower than 12). The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67) and post heat treatment on the phase evolution behavior of the powders and sintered ceramics were investigated. The phases of resulting powders and sintered ceramics were controllable by adjusting the initial Ca/P ratio. A single HAp phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat treatment range. Pure ${\beta}$-TCP and biphasic calcium phosphate (HAp/${\beta}$-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat treated at $900^{\circ}C$ or higher. Dense ceramics with translucency were obtained at considerably lower sintering temperatures.

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes (Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성)

  • Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.