• Title/Summary/Keyword: Aquaculture Effluent

Search Result 46, Processing Time 0.023 seconds

Physiological Responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) Exposed to High Ammonium Effluent in a Seaweed-based Integrated Aquaculture System

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Seo, Tae-Ho;Shin, Jong-Ahm;Chung, Ik-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • Porphyra yezoensis is known to act as a biofilter against nutrient-rich effluent in seaweed-based integrated aquaculture systems. However, few studies have examined its physiological status under such conditions. In this study, we estimated the photosynthetic activity of P. yezoensis by chlorophyll fluorescence of PSII (${\Delta}F/F'm$ and relative $ETR_{max}$) using the Diving-PAM fluorometer (Walz, Germany). In addition, bioremediation capacity, tissue nutrients, and C:N ratio of P. yezoensis were investigated. The ammonium concentration in seawater of seaweed tank 4 decreased from $72.1{\pm}2.2$ to $33.8{\pm}0.4{\mu}M$ after 24 hours. This indicates the potential role of P. yezoensis in removing around 43% of ammonium from the effluents. Tissue carbon contents in P. yezoensis were constant during the experimental period, while nitrogen contents had increased slightly by 24 hours. In comparison with the initial values, the ${\Delta}F/F'm$ and $rETR_{max}$ of P. yezoensis had increased by about 20 and 40%, respectively, after 24 hours. This indicates that P. yezoensis condition improved or remained constant. These results suggest that chlorophyll fluorescence is a powerful tool in evaluating the physiological status of seaweeds in a seaweed-based integrated aquaculture system.

Nitrification and Denitrification of Land-based Fish Farm Wastewater using an Anaerobic-Aerobic Upflow Biological Aerated Filter (혐기-호기 상향류 필터 공정에서 양식배출수의 질산화 및 탈질 연구)

  • Park, Noh-Back;Lee, Hyun-Young;Kim, Seong-Min;Lee, Jun-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.622-629
    • /
    • 2014
  • This study induced biological denitrification and nitrification via a biofiltration process with the view of removing nitrogen from land-based fish farm effluent. To achieve this, we operated an aquaculture nitrogen-removal system that includes a denitrification and nitrification reactor [working volume 40 L, flow rate 64.8 L, HRT (hydraulic retention time) 14.8 h, HRT considering recycling of NOx 7.4 h]. In the continuous process, the nitrification rate of ammonium nitrogen exceeded 90% at a steady state and the denitrification efficiency exceeded 80% with recycling to a pre-anoxic reactor. In addition, the pH in the final effluent was lower with a low influent water alkalinity averaging 100 mg/L (as $CaCO_3$). For effective denitrification reactions, carbon must be supplied via particulate organic matter (POM) hydrolysis because of the low C/N (carbon/nitrogen) ratio in the water.

Processing Optimization of Seasoned Laver Pyropia yezoensis with Concentrates of Octopus Octopus vulgaris Cooking Effluent Using Response Surface Methodology (반응표면분석법을 활용한 문어(Octopus vulgaris) 조미김(Pyropia yezoensis)의 제조공정 최적화)

  • Kim, Do Youb;Kang, Sang In;Jeong, U-Cheol;Lee, Jung Seok;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.4
    • /
    • pp.311-320
    • /
    • 2019
  • This study aimed to optimize mixing conditions (adding amount of squid skin and sea tangle Saccharina japonica) for concentrates of octopus Octopus vulgaris cooking effluent (COCE) and roasting conditions (temperature and time) of seasoned Laver Pyropia yezoensis with concentrates of octopus cooking effluent (SL-COCE) using response surface methodology (RSM). The results of RSM program for COCE showed that the optimum independent variables ($X_1$, squid skin amount; $X_2$, sea tangle amount) based on the dependent variables ($Y_1$, odor intensity; $Y_2$, amino-N content; $Y_3$, sensory overall acceptance) for high-quality COCE were 0.53% (w/w) for $X_1$ and 0.48% (w/w) for $X_2$ for uncoded values. The results of the RSM program for SL-COCE showed that the optimum independent variables ($X_1$, roasted temp.; $X_2$, roasted time) based on the dependent variables ($Y_1$, burnt odor intensity; $Y_2$, water activity; $Y_3$, sensory overall acceptance) for high-quality SL-COCE were $344^{\circ}C$ for $X_1$ and 8 sec for $X_2$ for uncoded values. The SL-COCE prepared under optimum procedure was superior in sensory overall acceptance to commercial seasoned laver.

Changes in BOD, COD, Chlorophyll-a and Solids in Aquaculture Effluent with Various Chemical Treatments

  • Park, Jeonghwan;Daniels, Harry V.
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Four chemical treatments with hydrogen peroxide (H2O2), copper sulfate (CuSO4), potassium permanganate (KMnO4) and chlorine (Cl2) were applied to the effluent pond water of a hybrid striped bass saltwater recirculating aquaculture system to compare their oxidation power. Four chemicals were applied at concentrations of 0 (control), 1, 5, 10 and 20 mg/l. An additional concentration of 40 mg/l was included in the chlorine treatment. Water samples from four hybrid striped bass ponds were tested with KMnO4 and Cl2. H2O2 did not reduce any of BOD, COD and chlorophyll-a, and copper sulfate was only effective on chlorophyll-a for the effluent pond. Removal efficiencies for chlorophyll-a by copper sulfate were 19.2%, 37.5%, 54.2% and 74.1% dose-dependently. Potassium permanganate effectively removed the BOD, COD and chlorophyll-a. The COD removal rates in four fish ponds varied from 15.9% to 31.6% at the concentration of 10 mg/l. Interestingly, Cl2 did not reduce the BOD and COD at all, but the BOD and COD instead increased drastically with increasing the Cl2 concentration. The pond water with the highest initial BOD and COD values among the fish ponds tested increased by 350% in the BOD and 150% in the COD at 20 mg/l. Furthermore, Cl2 did not significantly reduce any types of solid matter in this study, while KMnO4 seemed to reduce some extent volatile dissolved solid in the fish pond.

Evaluation of seaweed bioremediation capability in the Sustainable Seaweed Integrated Aquaculture System (SSIAS) (해조류 수질 정화능력을 이용한 해조 복합양식 시스템 개발 연구)

  • Chung, Ik-Kyo;Kang, Yun-Hee;Yang, Yu-Feng
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.142-143
    • /
    • 2003
  • Seaweeds are reconsidered as the biofilter and production component in the sustainable seaweed integrated aquaculture system (SSIAS) to .educe the environmental impact of nutrient rich effluent in the coastal ecosystem. The development of the SSIAS is initiated between China and Korea to remedy the coastal eutrophication caused by fed aquacultures. (omitted)

  • PDF

Impact of Seepage from Land Treatment of Pulp and Paper Effluent on Water Quality and Aquaculture

  • Wirojanagud, W.;Tantemsapaya, N.;Chalokpanrat, P.;Suwannakom, S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.163-166
    • /
    • 2010
  • Pulp and paper mill wastewater has been treated by biological treatment, but the secondary effluent still contains high lignin, chemical oxygen demand, color and total dissolved solids. Tertiary treatment by land application, referred to as 'Project Green,' has been implemented to treat such high quantities of undesirable matters. The impacts of seepage from Project Green diffusing into receiving streams on the water quality and fish pen aquaculture were studied via the integration of technical and social approaches. The determination of the water quality was performed for 13 sampling stations along the receiving stream, including the Chot stream, Chot lagoon and the Pong River. The water quality was generally at normal levels, with the exception of total dissolved solids. The levels of matter were higher at the Chot stream, but became more diluted at the Chot lagoon and the Pong River, respectively. The social approach was conducted through the voluntary participation of the villagers as research assistants for the fish aquaculture study. Fish could grow at three fish pens within the study sites at the location of Project Green, the Chot lagoon and the Pong River. Fish growth at the Chot lagoon was better at the site of Project Green and the Pong River. The integration of technical and social approaches was a meaningful tool not only for the technical feasibility but in helping to solve the conflict between the community and industry.

Biochemical Responses in Olive Flounder, Paralichthys olivaceus Fed Diet Supplemented with Fermented Aquaculture Sewage (양식장 배출물 발효물의 사료첨가에 따른 넙치, Paralichthys olivaceus의 생화학적 반응)

  • Jee, Jung-Hoon;Moon, Sang-Wook;Kim, Se-Jae;Lee, Young-Don;Keum, Yoo-Hwa;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2005
  • Effluent of aquaculture industry has caused a growing concern regarding its environmental impact. We assessed the use of flounder farming sewage as supplement of diet, to minimize the impact of aquaculture on the environment or also establish the technique for the recycling of effluent sediment derived from land-based seawater fish farm. In order to investigate the effects of a fermented aquaculture waste on biochemical responses of olive flounder (Paralichthys olivaceus), fermented products of aquaculture wastes were used as test compounds that cause hepatic and renal stress through the induction of oxidative stress in liver and kidney. Hepatosomatic index (HSI), glutathione content and glutathione dependent enzyme were not significantly different and no correlation was found within the different types of fermentation condition or supplement concentration, except for significant increases in 50% fermentation group and 50% concentration group in case of glutathione peroxidase activity and HSI value, respectively. These results showed addition of fermented aquaculture sewage may be an economic artificial sources of diet for fish aquaculture practices without affecting the function and safety in view of biochemical examination.

Development and Characterization of Seasoned Laver with Concentrated Cooking Oyster Effluent Using RSM (반응표면분석법을 활용한 조미굴김의 개발 및 특성)

  • Kang, Sang In;Lee, Jung Suck;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.156-164
    • /
    • 2020
  • To develop a seasoned laver from cooking oyster effluent (C-COE), this study optimized the C-COE concentration, roasting temperature and time using response surface methodology (RSM). The optimal C-COE concentration, roasting temperature and time for producing seasoned laver from C-COE were 31.0%, 182.2℃ and 21.1 sec, respectively. The proximate composition of the seasoned laver prepared with C-COE under the conditions was 5.2% moisture, 37.4% crude protein, 8.2% crude lipid, 11.1% ash, 38.1% carbohydrate. The water activity of the prototype seasoned laver was 0.038. The prototype had stronger taste and flavor intensities than a commercial product. There was no difference (P>0.05) in the Hunter color value between the prototype and the commercial product. The peroxide (POV) and acid values (AV) of the prototype were 6.0 meq/kg and 1.4 mg KOH/g, respectively, which are considered acceptable. The results suggest that the seasoned laver with C-COE developed can be industrialized.

Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent

  • Chung, Ik-Kyo;Kang, Yun-Hee;Charles Yarish;George P. Kraemer;Lee, Jin-Ae
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • A seaweed biofilter/production system of being developed to reduce the environmental impact of marine fish farm effluent in coastal ecosystems as a part of an integrated aquaculture system. Several known seaweed taxa and their cultivars have been considered as candidate biofilter organisms based on their species-specific physiological properties such as nutrient uptake kinetics and their economic value. Porphyra is an excellent cadidate and shows efficient nutrient extraction properties. Rates of ammonium uptake were maintained at around 3 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ at 150 ${\mu}M$ inorganic nitrogen at $10^{\circ}C$. Ulva is another possible biofilter candidate with an uptake rate of 1.9 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ under same conditions. A simple uptake/growth and harvest model was applied to estimate the efficiency of the biofilter/production system. The model was deterministic and used a compartment model structure based on difference equations. The efficiency of Porpyra filter was estimated over 17% of ${NH_4}^+$ removal from the contimuous supply of 100 ${\mu}mole{\cdot}l^{-1}\;{NH_4}^+\;at\;100l{\cdot}sec^{-1}$ flow rate.

Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production

  • Luo, Guozhi;Wang, Jiao;Ma, Niannian;Liu, Zefeng;Tan, Hongxin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1420-1427
    • /
    • 2016
  • Geosmin and 2-methylisoborneol (2-MIB) are two of the most common taint compounds that adversely affect the quality of aquacultural animals. In the present study, 94% of geosmin and 97% of 2-MIB in suspended growth reactors producing bioflocs (SGRs) with aquaculture waste were removed after inoculation with Bacillus subtilis, significantly higher than that of control SGRs (70% of geosmin and 86.4% of 2-MIB). The lowest concentrations of geosmin and 2-MIB achieved in the effluent of the SGRs were 2.43 ± 0.42 ng/l and 2.23 ± 0.15 ng/l, respectively. The crude protein content of the bioflocs produced in the SGRs was 35 ± 4%. The NH4+-N and NO2--N concentrations in the effluent of the reactors were 1.13 ± 0.21 mg/l and 0.42 ± 0.04 mg/l, respectively. These results suggest that inoculated with Bacillus subtilis, SGRs have a better performance to reuse the nitrogen in fish waste and to remove geosmin and 2-MIB from the culture water efficiently.