Browse > Article
http://dx.doi.org/10.4490/ALGAE.2002.17.3.187

Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent  

Chung, Ik-Kyo (Department of Marine Science, Pusan National University)
Kang, Yun-Hee (Department of Marine Science, Pusan National University)
Charles Yarish (Department of Ecology and Evolutionary Biology, University of Connecticut)
George P. Kraemer (Department of Environmental Sciences, Purchase College, State University of New York)
Lee, Jin-Ae (School of Enviromental Science and Engineering, Inje University)
Publication Information
ALGAE / v.17, no.3, 2002 , pp. 187-194 More about this Journal
Abstract
A seaweed biofilter/production system of being developed to reduce the environmental impact of marine fish farm effluent in coastal ecosystems as a part of an integrated aquaculture system. Several known seaweed taxa and their cultivars have been considered as candidate biofilter organisms based on their species-specific physiological properties such as nutrient uptake kinetics and their economic value. Porphyra is an excellent cadidate and shows efficient nutrient extraction properties. Rates of ammonium uptake were maintained at around 3 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ at 150 ${\mu}M$ inorganic nitrogen at $10^{\circ}C$. Ulva is another possible biofilter candidate with an uptake rate of 1.9 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ under same conditions. A simple uptake/growth and harvest model was applied to estimate the efficiency of the biofilter/production system. The model was deterministic and used a compartment model structure based on difference equations. The efficiency of Porpyra filter was estimated over 17% of ${NH_4}^+$ removal from the contimuous supply of 100 ${\mu}mole{\cdot}l^{-1}\;{NH_4}^+\;at\;100l{\cdot}sec^{-1}$ flow rate.
Keywords
ammonium uptake; biofilter; integrated aquaculture; Porphyra; seaweed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cuomo V., Merrill J., Palomba I. and Perretti A. 1993. Systematic collection of Ulva and mariculture of Porphyra: biotechnology against eutrophication in the Venice lagoon. Intern. J. Environ. Studies 43: 141-149.   DOI   ScienceOn
2 Fernandes T.F., Eleftheriou A., Ackefors H., Eleftheriou M., Ervik A., Sanchez-Mata A., Scanlon, T., White P., Cochrane S., Pearson T.H. and Read P.A. 2001. The scientific principles underlying the monitoring of the environmental impacts of aquaculture. J. Appl. Ichthyol. 17: 181-193.   DOI   ScienceOn
3 Fernandes T.F.,Miller K.L. and Read P.A. 2000. Monitoring and regulation of marine aquaculture in Europe. J. Appl. Ichthyol. 16: 138-143.   DOI   ScienceOn
4 Luning, K. 2002. SEAPURA: Seaweeds purifying effluents from fish farms: An EU project coordinated by the Wadden Sea Station SyIt. Wadden Sea Newsletter 2001-2. pp. 20-21. (http://seapura.com/seapura.html)
5 Pedersen M.F. and Borum J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar. Ecol. Prog. Ser. 161: 155-163.   DOI
6 Rawson Jr. M.V., Chen C., Ji R., Zhu M., Wang D., Wang L., Yarish C., Sullivan J.B., Chopin T. and Carmona R. 2002. Understanding the interaction of extractive and fed aquaculture using ecosystem modeling. In: Stickney, R. R. and McVey, J. P. (eds), Responsible marine aquaculture. CABI Publishing, New York. pp. 91-104.
7 Troell M., Halling C., Nilsson A., Buschmann A.H., Kautsky N. and Kautsky S. 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156: 45-61.   DOI   ScienceOn
8 Anonymous. 2000. FAO. The state of world fisheries and aquaculture 2000. (http://www.fao.org/docrep/003/x8002e/x8002e00.htm)
9 Wallentiuns I. 1984. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80: 215-225   DOI
10 Anonymous. 2002. Korean Harmful Algal Blooms, National Fisheries Research and Development Institute. (http://www.nfrda.re.kr/korhab/index.htm)
11 Paez-Osuna F., Guerrero-Galvan S.R. and Ruiz-Fernandez A.C. 1999. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Mar. Pollut. Bull. 38: 585-592.   DOI   ScienceOn
12 Subandar A., Petrell R.J. and Harrison P.J. 1993. Laminaria culture for reduction of dissolved inorganic nitrogen in salmon farm effluent. J. Appl. Phycol. 5: 455-463.   DOI   ScienceOn
13 Neori A., Krom M.D., Ellner S.P., Boyd C.E., Popper D., Rabinovitch R., Davison P.J., Dvir O., Zuber D., Ucko M., Angel D. and Gordin H. 1996. Seaweed biofilter as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141: 183-199.   DOI   ScienceOn
14 Qian P.-Y., Wu C.Y., Wu M. and Xie Y.K. 1996. Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. Aquaculture 147: 21-35.   DOI   ScienceOn
15 Chopin T. and Yarish C. 1999. Aquaculture does not only mean finfish monoculture ... seaweeds must be a significant component for an integrated ecosystem approach. Bull. Aquacul. Assoc. Canada 99-1: 35-37.
16 Nelson S.G., Glenn E.P., Conn J., Moore D., Walsh T. and Akutagawa M. 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture 193: 239-248.   DOI   ScienceOn
17 Naylor R.I., Goldberg R.J., Primavera J.H., Kautsky N., Beveridge M.C.M., Clay K., Folke C., Lubchenco J., Mooney H. and Troell M. 2001. Effect of aquaculture on world fish supplies. Nature 405: 1017-1024.   DOI   ScienceOn
18 Stead S.M. and Laird L. (eds), 2002. Handbook of salmon farming. Springer, London, pp. 163-166.
19 Krom M.D., Ellner S., van Rijn J. and Neori A. 1995. Nitrogen and phosphorus cycling and transformations in a prototype 'non-polluting' integrated mariculture system, Eilat, Israel. Mar. Ecol. Prog. Ser. 118: 25-36.   DOI
20 Troell M., Kautsky N. and Folke C. 1999. Applicability of integrated coastal aquaculture system. Ocean Coastal Management 42: 63-69.   DOI   ScienceOn
21 Smith V.H., Tilman G.D. and Nekola J.C. 1999. Eutrophication: impacts of excess nutrient input on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100: 179-196.   DOI   ScienceOn
22 Jimenez Del Rio M., Ramazanov Z. and Garcia-Reina G. 1994. Optimization of yield and biofiltering efficiencies of Ulva rigida C.Ag. cultivated with Sparus aurata L. waste waters. Sci. Mar. 58: 329-335.
23 Neori A., Ragg N.L.C. and Shpigel M. 1998. The integrated cuIture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. AquacuIt. Eng. 17: 215-239.   DOI   ScienceOn
24 Taylor R.B., Peek J.T.A. and Rees T.A.V. 1998. Scaling of ammonium uptake by seaweeds to surface area:volume ratio:geographical variation and the role of uptake by passive diffusion. Mar. Ecol. Prog. Ser. 169: 143-148.   DOI
25 Schramm W. 1999. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J. Appl. Phycol. 11: 69-78.   DOI   ScienceOn
26 Chopin T., Buschmann A.H., Halling C., Troell M. Kautsky N., Neori A., Kraemer G.P., Zertuche-Gonzalez J. A., Yarish C. and Neefus C. 2001. Integrated seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37: 975-986.   DOI   ScienceOn
27 Cohen I. and Neori M. 1991. Ulva lactuca biofilters for marine fishponds effluents. 1. Ammonium uptake kinetics and nitrogen content. Bot. Mar. 34: 475-482.   DOI
28 Stickney R.R. 2000. Polyculture. In: Stickney, R. R. (ed.), Encyclopedia of aquaculture. John Wiley & Sons, Inc., New York, pp. 658-660.
29 Dvir O., van Rijn J. and Neori A. 1999. Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system. Mar. Ecol. Prog. Ser. 181: 97-106.   DOI   ScienceOn
30 Neori A., Shpigel M. and Ben-Ezra D. 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186: 279-291.   DOI   ScienceOn
31 Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford.
32 Vandermuelen H. and Gordin H. 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass culture and treatment of effluent. J. Appl. Biol. 2: 363-374.
33 Jones A.B., Dennison W.C and Preston N.P. 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193: 155-178.   DOI   ScienceOn
34 Black K.D. (ed.) 2001. Environmental Impacts of aquaculture. Sheffield Academic Press, Sheffield. 214p.
35 Buschmann A.H., Mora O.A., Gomez P., Bottger M., Buitano S., Retamales G., Vergara P.A. and Gutierrez A. 1994. Gracilatia chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283-300.   DOI   ScienceOn
36 Harrison P.J. and Hurd C.L. 2001. Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cah. Bioi. Mar. 42: 71-82.
37 Jones A.B., Preston N.P. and Dennison W.C. 2002. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquacult. Res. 33: 1-19.   DOI   ScienceOn
38 Jones A.B., Stewart G.R., and Dennison W.C. 1996. Macroalgal responses to nitrogen source and availability: amino acid metabolic profiling as a bioindicator using Gracilaria edulis (Rhodophyta). J. Phycol. 32: 757-766.   DOI   ScienceOn
39 McVey J.P., Stickney R.R., Yarish C. and Chopin T. 2002. Aquatic polyculture and balanced ecosystem management: New paradigms for seafood production. In: Stickney, R R and McVey, J. P. (eds), Responsible marine aquaculture. CABI Publishing, New York. pp. 91-104.
40 Newkirk G. 1996. Sustainable coastal production systems: a model for integrating aquaculture and fisheries under community management. Ocean Coastal Management 32: 69-83.   DOI   ScienceOn
41 Bhang Y.J. and Kim J.H. 2001. The role of Ulva species as a competitor on algal communities in green tide area. Proc. 15th Ann. Meeting of Korean Soc. Phycol. June 1-2, 2001. Kangnung Univ. Korea.
42 Wu R.S.S. 1995. The environmental impacts of marine fish culture: towards a sustainable future. Mar. Pollut. Bull. 31: 159-166.   DOI   ScienceOn
43 Hanisak M.D. 1983. The nitrogen relationships of marine macroalgae. In: Carpenter E.J. and Capone D.G. (eds), Nitrogen in the marine environment. Academic Press, London. pp. 699-730.
44 Anonymous. 1994. Studies on the development of polyculture system in thee coastal waters of Korea - Final report. National Fisheries Research and Development Institute. 570p. (in Korean with English summary)
45 Brzeski V. and Newkirk G. 1997. Integrated coastal food production systems - a review of current literature. Ocean Coastal Management 34: 55-71.   DOI   ScienceOn
46 Chopin T. and Yarish C. 1998. Nutrients or Not Nutrients? That is the question in seaweed aquaculture ... and the answer depends on the type and purpose of the aquaculture system. World Aquaculture 29: 31-33, 60-61.   DOI   ScienceOn
47 Chopin T., Yarish C., Wilkes R., Belyea E., Lu S. and Mathieson A. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11: 463-472.   DOI   ScienceOn
48 Chung I.K. 2002. The development of environmently sound integrated polyculture system. Min. Sci. Tech. Project #M6-0203-00-0041-02-A01-00-021-00.