• Title/Summary/Keyword: Approximation theorem

Search Result 122, Processing Time 0.025 seconds

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

On Testing Equality of Matrix Intraclass Covariance Matrices of $K$Multivariate Normal Populations

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • We propose a criterion for testing homogeneity of matrix intraclass covariance matrices of K multivariate normal populations, It is based on a variable transformation intended to propose and develop a likelihood ratio criterion that makes use of properties of eigen structures of the matrix intraclass covariance matrices. The criterion then leads to a simple test that uses an asymptotic distribution obtained from Box's (1949) theorem for the general asymptotic expansion of random variables.

  • PDF

WEAK CONVERGENCE OF A HYBRID ITERATIVE SCHEME WITH ERRORS FOR EQUILIBRIUM PROBLEMS AND COMMON FIXED POINT PROBLEMS

  • Kim, Seung-Hyun;Lee, Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.195-206
    • /
    • 2014
  • In this paper, we consider, under a hybrid iterative scheme with errors, a weak convergence theorem to a common element of the set of a finite family of asymptotically k-strictly pseudo-contractive mappings and a solution set of an equilibrium problem for a given bifunction, which is the approximation version of the corresponding results of Kumam et al.

Predicting Nuclear Power Plant Accidents in Korea (국내 원자력발전소 사고 예측)

  • Yang, Hee-Joong
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.79-89
    • /
    • 1993
  • We develop a statistical model to describe nuclear power plant accidents and predict time to next accident of various levels. We adopt Bayesian approach to obtain posterior and predictive distributions for the time to next accident. We also derive an approximation method to solve many dimensional numerical integration problems that we often encounter in a Bayesian approach. We introduce Influence Diagrams in modeling, and parameter updating, thereby the dependency or independency among model parameters are clearly shown. Also Separable Updating Theorem is utilized to easily obtain the posterior distributions.

  • PDF

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Numerical Method for Exposure Assessment of Wireless Power Transmission under Low-Frequency Band

  • Kim, Minhyuk;Park, SangWook;Jung, Hyun-Kyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.442-449
    • /
    • 2016
  • In this paper, an effective numerical analysis method is proposed for calculating dosimetry of the wireless power transfer system operating low-frequency ranges. The finite-difference time-domain (FDTD) method is widely used to analyze bio-electromagnetic field problems, which require high resolution, such as a heterogeneous whole-body voxel human model. However, applying the standard method in the low-frequency band incurs an inordinate number of time steps. We overcome this problem by proposing a modified finite-difference time-domain method which utilizes a quasi-static approximation with the surface equivalence theorem. The analysis results of the simple model by using proposed method are in good agreement with those from a commercial electromagnetic simulator. A simulation of the induced electric fields in a human head voxel model exposed to a wireless power transmission system provides a realistic example of an application of the proposed method. The simulation results of the realistic human model with the proposed method are verified by comparing it with the conventional FDTD method.

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

The Design and Implementation to Teach Sampling Distributions with the Statistical Inferences (통계적 추론에서의 표집분포 개념 지도를 위한 시뮬레이션 소프트웨어 설계 및 구현)

  • Lee, Young-Ha;Lee, Eun-Ho
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.273-299
    • /
    • 2010
  • The purpose of the study is designing and implementing 'Sampling Distributions Simulation' to help students to understand concepts of sampling distributions. This computer simulation is developed to help students understand sampling distributions more easily. 'Sampling Distributions Simulation' consists of 4 sessions. 'The first session - Confidence level and confidence intervals - includes checking if the intended confidence level is actually achieved by the real relative frequency for the obtained sample confidence intervals containing population mean. This will give the students clearer idea about confidence level and confidence intervals in addition to the role of sampling distribution of the sample means among those. 'The second session - Sampling Distributions - helps understand sampling distribution of the sample means, through the simulation method to make comparison between the histogram of sampling distributions and that of the population. The third session - The Central Limit Theorem - includes calculating the means of the samples taken from a population which follows a uniform distribution or follows a Bernoulli distribution and then making the histograms of those means. This will provides comprehension of the central limit theorem, which mentions about the sampling distribution of the sample means when the sample size is very large. The forth session - the normal approximation to the binomial distribution - helps understand the normal approximation to the binomial distribution as an alternative version of central limit theorem. With the practical usage of the shareware 'Sampling Distributions Simulation', we expect students to have a new vision on the sampling distribution and to get more emphasis on it. With the sound understandings on the sampling distributions, more accurate and profound statistical inferences are expected. And the role of the sampling distribution in the inferences should be more deeply appreciated.

  • PDF

Adaptive Nonlinear Control of Helicopter Using Neural Networks (신경회로망을 이용한 헬리콥터 적응 비선형 제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2004
  • In this paper, the helicopter flight control system using online adaptive neural networks which have the universal function approximation property is considered. It is not compensation for modeling errors but approximation two functions required for feedback linearization control action from input/output of the system. To guarantee the tracking performance and the stability of the closed loop system replaced two nonlinear functions by two neural networks, weight update laws are provided by Lyapunov function and the simulation results in low speed flight mode verified the performance of the control system with the neural networks.