Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.3.442

Numerical Method for Exposure Assessment of Wireless Power Transmission under Low-Frequency Band  

Kim, Minhyuk (Department of Electrical and Computer Engineering, Seoul National University)
Park, SangWook (ICT Convergence Research Team, EMI/EMC R&D Center, Corporation Support & Reliability Division, Korea Automotive Technology)
Jung, Hyun-Kyo (Department of Electrical and Computer Engineering, Seoul National University)
Publication Information
Abstract
In this paper, an effective numerical analysis method is proposed for calculating dosimetry of the wireless power transfer system operating low-frequency ranges. The finite-difference time-domain (FDTD) method is widely used to analyze bio-electromagnetic field problems, which require high resolution, such as a heterogeneous whole-body voxel human model. However, applying the standard method in the low-frequency band incurs an inordinate number of time steps. We overcome this problem by proposing a modified finite-difference time-domain method which utilizes a quasi-static approximation with the surface equivalence theorem. The analysis results of the simple model by using proposed method are in good agreement with those from a commercial electromagnetic simulator. A simulation of the induced electric fields in a human head voxel model exposed to a wireless power transmission system provides a realistic example of an application of the proposed method. The simulation results of the realistic human model with the proposed method are verified by comparing it with the conventional FDTD method.
Keywords
finite-difference time-domain method; hybrid technique; dosimetry; wireless power transmission; surface equivalence theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, Science 317, 83 (2007).   DOI
2 P. Stavroulakis, Biological effects of electromagnetic fields, Springer-verlag, Berlin (2003) pp. 187-190.
3 T. Namiki, IEEE Trans. Microwave Theory Tech. 47, 2003 (1999).   DOI
4 E. Li, I. Ahmed, and R. Vahldieck, IEEE Microw. Wireless Comp. Lett. 17, 319 (2007).   DOI
5 S. Staker, C. Holloway, A. Bhobe, and M. Piket-May, IEEE Trans. Electromagn. Compat. 45, 156 (2003).   DOI
6 J. Deford, H. Kanai, and O. P. Gandhi, IEEE Trans. Biomed Eng. 31, 644 (1984).
7 J. Deford and O. P. Gandhi, IEEE Trans. Electromagn. Compat. EMC-27, 168 (1985).   DOI
8 K. R. Davey, C. H. Cheng, and C. M. Epstein, IEEE Trans. Biomed. Eng. 38, 418 (1981).
9 T. W. Dawson, J. D. Moerloose, and M. A. stuchly, Appl. Comput. Electromagn. Soc. J. 11, 63 (1996).
10 S. W. Park, K. Wake, and S. Watanabe, IEEE Trans. Microw. Theory Techn. 61, 2153 (2013).   DOI
11 O. P. Gandhi and J. Y. Chen, Bioelectro. 1, 43 (1992).
12 J. D. Moerloose, T. W. Dawson, and M. A. Stuchly, Radio Sci. 32, 329 (1997).   DOI
13 Electromagnetic Software and Systems (EMSS). FEKO, Stellenbosch, South Africa, 2011. [Online]. Available: http://www.feko.info/
14 A. Elsherbeni and V. Demir, The finite-difference timedomain method for electromagnetics with matlab simulations, Scitech, Danver (2009) pp. 272-273.
15 D. M. Sullivan, Electromagnetic Simulation Using The FDTD Method, IEEE Press. New York (2000) pp. 1-4.
16 J. D. Jackson, Classical Electrodynamics, Wiley, Newyork (1999) pp. 218-220.
17 W. T. Kaune, J. L. Guttman, and R. Kavet, Bioelectro. 18, 67 (1997).   DOI
18 D. Andreuccetti and N. Zoppetti, Int. J. Occup. Saf. Ergon. 12, 201 (2006).   DOI
19 A. Hirata, Y. Takano, and T. Nagai, IEICE Trans. E93-C1, 60 (2010).
20 M. E. Potter, M. Okoniewski, and M. A. Stuchly, J. Comput. Physics 162, 82 (2000).   DOI
21 C. Gabriel and S. Gabriel, Brooks AFB, San Antonio (2006). [Online]. Available: http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/home.html
22 T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, Phys. Med. Biol. 61, 1 (2004).