• 제목/요약/키워드: Approximation Method

검색결과 2,543건 처리시간 0.023초

On an Approximation for Calculating Multivariate t Orthant Probabilities

  • Hea Jung Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제4권3호
    • /
    • pp.629-635
    • /
    • 1997
  • An approximation for multivariate t probability for an orhant region(i.e., a rectangular resion with lower limits of $-\infty$ for all margins) is proposed. It is based on conditional expectations, a regression with binary variables, and the exact formula for the evalution of the bivariate t integrals by Dunnett and Sobel. It is noted that the proposed approximation method is espicially useful for evaluating the multivariate t integrals where there is no simple method available until now.

  • PDF

A DIRECT SOLVER FOR THE LEGENDRE TAU APPROXIMATION FOR THE TWO-DIMENSIONAL POISSON PROBLEM

  • Jun, Se-Ran;Kang, Sung-Kwon;Kwon, Yong-Hoon
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.25-42
    • /
    • 2007
  • A direct solver for the Legendre tau approximation for the two-dimensional Poisson problem is proposed. Using the factorization of symmetric eigenvalue problem, the algorithm overcomes the weak points of the Schur decomposition and the conventional diagonalization techniques for the Legendre tau approximation. The convergence of the method is proved and numerical results are presented.

APPROXIMATION SCHEME FOR A CONTROL SYSTEM

  • KANG, SUNG-KWON
    • 호남수학학술지
    • /
    • 제16권1호
    • /
    • pp.103-109
    • /
    • 1994
  • Piezoceramic patches as collocated actuator and sensors are widely used in mechanical control systems. An approximation scheme for computing feedback gains arising in heat flux stabilization problem with such control mechanism is introduced. The scheme is based on a finite element method and a variational approach.

  • PDF

고차원 공간에서 유클리드 거리의 효과적인 근사 방안 (An Effective Method for Approximating the Euclidean Distance in High-Dimensional Space)

  • 정승도;김상욱;김기동;최병욱
    • 전자공학회논문지CI
    • /
    • 제42권5호
    • /
    • pp.69-78
    • /
    • 2005
  • 고차원 공간상의 벡터들 간의 유클리드 거리를 빠르게 계산하는 것은 멀티미디어 정보 검색을 위하여 매우 중요하다. 본 논문에서는 고차원 공간상의 두 벡터들 간의 유클리드 거리를 효과적으로 근사하는 방법을 제안한다. 이러한 근사를 위하여 두 벡터들의 놈(norm)을 사용하는 방법이 기존에 제안된 바 있다. 그러나 기존의 방법은 두 벡터간의 각도 성분을 무시하므로 근사 오차가 매우 커지는 문제점을 가진다. 본 연구에서 제안하는 방법은 기준 벡터라 부르는 별도의 벡터를 이용하여 추정된 두 벡터간의 각도 성분을 그들을 위한 유클리드 거리 근사에 사용한다. 이 결과, 각도 성분을 무시하는 기존의 방법과 비교하여 근사 오차를 크게 줄일 수 있다. 또한, 제안된 방법에 의한 근사 값은 유클리드 거리 보다 항상 작다는 것을 이론적으로 증명하였다. 이는 제안된 방법을 이용하여 멀티미디어 정보 검색을 수행할 때 착오 기각이 발생하지 않음을 의미하는 것이다. 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.

동하중을 받는 구조물의 최적화에 관한 연구동향 (An Overview of Optimization of Structures Subjected to Transient Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.369-386
    • /
    • 2005
  • Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석 (Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation)

  • 이상호;김효진;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Efficient Mechanical System Optimization Using Two-Point Diagonal Quadratic Approximation in the Nonlinear Intervening Variable Space

  • Park, Dong-Hoon;Kim, Min-Soo;Kim, Jong-Rip;Jeon, Jae-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1257-1267
    • /
    • 2001
  • For efficient mechanical system optimization, a new two-point approximation method is presented. Unlike the conventional two-point approximation methods such as TPEA, TANA, TANA-1, TANA-2 and TANA-3, this introduces the shifting level into each exponential intervening variable to avoid the lack of definition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these shifted exponential intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2002년도 춘계 공동학술발표회
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

운송시간 제어계에 있어서 보조분모분수식과 MISE를 이용한 새로운모델 간략법 (A New Model Approximation Using the ADP and MISE of Continuous-Time Systems)

  • 권오신;황형수;김성중
    • 대한전기학회논문지
    • /
    • 제36권9호
    • /
    • pp.660-669
    • /
    • 1987
  • Routh approximation method is the most computationally attractive. But this method may cause time-response error because this method does not match the time-response directly. In this paper a new mixed method for obtaining stable reduced-order models for high-order continuous-time systems is proposed. It makes use of the advantages of the Routh approximation method and the Minimization of Integral Squared Error(MISE) criterion approach. In this mixed method the characteristic polynomial of the reduced-order model is first obtained from that of original system by using the Auxiliary Denominator Polynomial(ADP). The numerator polynomial is then determined so as to minimize the intergral squared-error of unit step responses. The advantages of the propsed method are that the reduced models are always stable if the original system are stable and the frequency domain and time domain characteristic of the original system will be preserved in the reduced models.

  • PDF