• Title/Summary/Keyword: Approximate Technique

Search Result 422, Processing Time 0.024 seconds

Approximate Top-k Subgraph Matching Scheme Considering Data Reuse in Large Graph Stream Environments (대용량 그래프 스트림 환경에서 데이터 재사용을 고려한 근사 Top-k 서브 그래프 매칭 기법)

  • Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.42-53
    • /
    • 2020
  • With the development of social network services, graph structures have been utilized to represent relationships among objects in various applications. Recently, a demand of subgraph matching in real-time graph streams has been increased. Therefore, an efficient approximate Top-k subgraph matching scheme for low latency in real-time graph streams is required. In this paper, we propose an approximate Top-k subgraph matching scheme considering data reuse in graph stream environments. The proposed scheme utilizes the distributed stream processing platform, called Storm to handle a large amount of stream data. We also utilize an existing data reuse scheme to decrease stream processing costs. We propose a distance based summary indexing technique to generate Top-k subgraph matching results. The proposed summary indexing technique costs very low since it only stores distances among vertices that are selected in advance. Finally, we provide k subgraph matching results to users by performing an approximate Top-k matching on the summary indexing. In order to show the superiority of the proposed scheme, we conduct various performance evaluations in diverse real world datasets.

Some new similarity based approaches in approximate reasoning and their applications to pattern recognition

  • Swapan Raha;Nikhil R. Pal;Ray, Kumar-Sankar
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.719-724
    • /
    • 1998
  • This paper presents a systematic developement of a formal approach to inference in approximate reasoning. We introduce some measures of similarity and discuss their properties. Using the concept of similarity index we formulate two methods for inferring from vague knowledge. In order to illustrate the effectiveness of the proposed technique we use it to develop a vowel recognition system.

  • PDF

On Approximate Prediction Intervals for Support Vector Machine Regression

  • Seok, Kyung-Ha;Hwang, Chang-Ha;Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.65-75
    • /
    • 2002
  • The support vector machine (SVM), first developed by Vapnik and his group at AT &T Bell Laboratories, is being used as a new technique for regression and classification problems. In this paper we present an approach to estimating approximate prediction intervals for SVM regression based on posterior predictive densities. Furthermore, the method is illustrated with a data example.

  • PDF

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.

On the Implementation of an Optimal Basis Identification Procedure for Interior Point Method (내부점 선형계획법에서의 최적기저 추출방법의 구현)

  • 임성묵;박순달
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • In this study, we deals with the implementation of an optimal basis identification procedure for interior point methods. Our implementation is based on Megiddo’s strongly polynomial algorithm applied to Andersen and Ye’s approximate LP construction. Several techniques are explained such as the use of effective indicator for obtaining optimal partition when constructing the approximate LP, the efficient implementation of the problem reduction technique proposed by Andersen, the crashing procedure needed for fast dual phase of Megiddo’s algorithm and the construction of the stable initial basis. By experimental comparison, we show that our implementation is superior to the crossover scheme implementation.

  • PDF

Approximate moments of a variance estimate with imputed conditional means

  • Kang Woo Ram;Shin Min Woong;Lee Sang Eum
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • Schafer and Shenker(2000) mentioned the one of analytic imputation technique involving conditional means. We derive an approximate moments of a variance estimate with imputed conditional means.

  • PDF

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC ARROWHEAD MATRICES

  • Ali Beik, Fatemeh Panjeh;Salkuyeh, Davod Khojasteh
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.349-372
    • /
    • 2015
  • This paper concerns with exploiting an oblique projection technique to solve a general class of large and sparse least squares problem over symmetric arrowhead matrices. As a matter of fact, we develop the conjugate gradient least squares (CGLS) algorithm to obtain the minimum norm symmetric arrowhead least squares solution of the general coupled matrix equations. Furthermore, an approach is offered for computing the optimal approximate symmetric arrowhead solution of the mentioned least squares problem corresponding to a given arbitrary matrix group. In addition, the minimization property of the proposed algorithm is established by utilizing the feature of approximate solutions derived by the projection method. Finally, some numerical experiments are examined which reveal the applicability and feasibility of the handled algorithm.

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

A Novel Cryptosystem Based on Steganography and Automata Technique for Searchable Encryption

  • Truong, Nguyen Huy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2258-2274
    • /
    • 2020
  • In this paper we first propose a new cryptosystem based on our data hiding scheme (2,9,8) introduced in 2019 with high security, where encrypting and hiding are done at once, the ciphertext does not depend on the input image size as existing hybrid techniques of cryptography and steganography. We then exploit our automata approach presented in 2019 to design two algorithms for exact and approximate pattern matching on secret data encrypted by our cryptosystem. Theoretical analyses remark that these algorithms both have O(n) time complexity in the worst case, where for the approximate algorithm, we assume that it uses ⌈(1-ε)m)⌉ processors, where ε, m and n are the error of our string similarity measure and lengths of the pattern and secret data, respectively. In searchable encryption, our cryptosystem is used by users and our pattern matching algorithms are performed by cloud providers.