• Title/Summary/Keyword: Applied exponential smoothing method

Search Result 25, Processing Time 0.019 seconds

A study of short-term load forecasting in consideration of the weather conditions (대기상태를 고려한 단기부하예측에 관한 연구)

  • 김준현;황갑주
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.368-374
    • /
    • 1982
  • This paper describes a combined algorithm for short-term-load forecating. One of the specific features of this algorithm is that the base, weather sensitive and residual components are predicted respectively. The base load is represented by the exponential smoothing approach and residual load is represented by the Box-Jenkins methodology. The weather sensitive load models are developed according to the information of temperature and discomfort index. This method was applied to Korea Electric Company and results for test periods up to three years are given.

  • PDF

Multiple aggregation prediction algorithm applied to traffic accident counts (다중 결합 예측 알고리즘을 이용한 교통사고 발생건수 예측)

  • Bae, Doorham;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.851-865
    • /
    • 2019
  • Discovering various features from one time series is complicated. In this paper, we introduce a multi aggregation prediction algorithm (MAPA) that uses the concepts of temporal aggregation and combining forecasts to find multiple patterns from one time series and increase forecasting accuracy. Temporal aggregation produces multiple time series and each series has separate properties. We use exponential smoothing methods in the next step to extract various features of time series components in order to forecast time series components for each series. In the final step, we blend predictions of the same kind of components and forecast the target series by the summation of blended predictions. As an empirical example, we forecast traffic accident counts using MAPA and observe that MAPA performance is superior to conventional methods.

Performance for simple combinations of univariate forecasting models (단변량 시계열 모형들의 단순 결합의 예측 성능)

  • Lee, Seonhong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • In this paper, we consider univariate time series models that are well known in the field of forecasting and we study on forecasting performance for their simple combinations. The univariate time series models include exponential smoothing methods and ARIMA (autoregressive integrated moving average) models, their extended models, and non-seasonal and seasonal random walk models, which is frequently used as benchmark models for forecasting. The median and mean are simply used for the combination method, and the data set used for performance evaluation is M3-competition data composed of 3,003 various time series data. As results of evaluating the performance by sMAPE (symmetric mean absolute percentage error) and MASE (mean absolute scaled error), we assure that the simple combinations of the univariate models perform very well in the M3-competition dataset.

Forecasting and Evaluation of the Accident Rate and Fatal Accident in the Construction Industries (건설업에서 재해율과 업무상 사고 사망의 예측 및 평가)

  • Kang, Young-Sig
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Many industrial accidents have occurred continuously in the manufacturing industries, construction industries, and service industries of Korea. Fatal accidents have occurred most frequently in the construction industries of Korea. Especially, the trend analysis of the accident rate and fatal accident rate is very important in order to prevent industrial accidents in the construction industries systematically. This paper considers forecasting of the accident rate and fatal accident rate with static and dynamic time series analysis methods in the construction industries. Therefore, this paper describes the optimal accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM), and kalman filtering model (KFM) with existing accident data in construction industries. In this paper, microsoft foundation class (MFC) soft of Visual Studio 2008 was used to predict the accident rate and fatal accident rate. Zero Accident Program developed in this paper is defined as the predicted accident rate and fatal accident rate, the zero accident target time, and the zero accident time based on the achievement probability calculated rationally and practically. The minimum value for minimizing SSE in the construction industries was found in 0.1666 and 1.4579 in the accident rate and fatal accident rate, respectively. Accordingly, RAM and ARIMA model are ideally applied in the accident rate and fatal accident rate, respectively. Finally, the trend analysis of this paper provides decisive information in order to prevent industrial accidents in construction industries very systematically.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Smoothing Kaplan-Meier estimate using monotone support vector regression (단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활)

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1045-1054
    • /
    • 2012
  • Support vector machine is known to be the very useful statistical method in classification and nonlinear function estimation. In this paper we propose a monotone support vector regression (SVR) for the estimation of monotonically decreasing function. The proposed monotone SVR is applied to smooth the Kaplan-Meier estimate of survival function. Experimental results are then presented which indicate the performance of the proposed monotone SVR using survival functions obtained by exponential distribution.

Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis (시계열 분석 기반 신뢰구간 추정을 통한 효율적인 이상감지)

  • Kim, Yeong-Ju;Heo, You-Kyung;Park, Jin-Gwan;Jeong, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.708-715
    • /
    • 2014
  • In this paper, we suggest a method of realtime confidence interval estimation to detect abnormal states of sensor data. For realtime confidence interval estimation, the mean square errors of the exponential smoothing method and moving average method, two of the time series analysis method, where compared, and the moving average method with less errors was applied. When the sensor data passes the bounds of the confidence interval estimation, the administrator is notified through alarming. As the suggested method is for realtime anomaly detection in a ship, an Android terminal was adopted for better communication between the wireless sensor network and users. For safe navigation, an administrator can make decisions promptly and accurately upon emergency situation in a ship by referring to the anomaly detection information through realtime confidence interval estimation.

Identification of guideway errors in the end milling machine using geometric adaptive control algorithm (기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명)

  • 정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 1988
  • An off-line Geometric Adaptive Control Scheme is applied to the milling machine to identify its guideway errors. In the milling process, the workpiece fixed on the bed travels along the guideway while the tool and spindle system is fixed onto the machine. The scheme is based on the exponential smoothing of post-process measurements of relative machining errors due to the tool, workpiece and bed deflections. The guideway error identification system consists of a gap sensor, a, not necessarily accurate, straightedge, and the numerical control unit. Without a priori knowledge of the variations of the cutting parameters, the time-varying parameters are also estimated by an exponentially weighted recursive least squares method. Experimental results show that the guideway error is well identified within the range of RMS values of geometric error changes between machining passes disregarding the machining conditions.

Temporal hierarchical forecasting with an application to traffic accident counts (시간적 계층을 이용한 교통사고 발생건수 예측)

  • Jun, Gwanyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • This paper introduces how to adopt the concept of temporal hierarchies to forecast time series data. Similarly as in hierarchical cross-sectional data, temporal hierarchies can be constructed for any time series data by means of non-overlapping temporal aggregation. Reconciliation forecasts with temporal hierarchies result in more accurate and robust forecasts when compared with the independent base and bottom-up forecasts. As an empirical example, we forecast traffic accident counts with temporal hierarchies and observe that reconciliation forecasts are superior to the base and bottom-up forecasts in terms of forecast accuracy.

Hierarchical time series forecasting with an application to traffic accident counts (계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측)

  • Lee, Jooeun;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.181-193
    • /
    • 2017
  • The paper introduces bottom-up and optimal combination methods that can analyze and forecast hierarchical time series. These methods allow forecasts at lower levels to be summed consistently to upper levels without any ad-hoc adjustment. They can also potentially improve forecast performance in comparison to independent forecasts. We forecast regional traffic accident counts as time series data in order to identify efficiency gains from hierarchical forecasting. We observe that bottom-up or optimal combination methods are superior to independent methods in terms of forecast accuracy.