• Title/Summary/Keyword: Applied Load Range

Search Result 412, Processing Time 0.028 seconds

무산소-호기공정을 이용한 순환식 생물여과반응기에서 동시 질산화 및 탈질화의 특성 연구

  • Lee, Su-Cheol;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.343-346
    • /
    • 2000
  • This study was carried out to investigate the effects of influent $NH_4^{\;+}-N$ load, C/N ratio and superficial air velocity on the nitrogen removal efficiencies. Laboratory scale upflow biological aerated filter(BAF) was consisted of an anoxic-aerobic filter packed with porous ceramic media and operated with synthetic wastewater. BAFs requires less energy and space for the system when compared to conventional activated sludge process. The influent C/N ratios were varied from 0 to 1 by adjusting acetate. Various superficial air velocity had been applied to investigate aeration effect on nitrogen removal. The BAF reactor showed more than 90% average $NH_4^{\;+}-N$ removal efficiencies at $NH_4^{\;+}-N$ loading in the range of $0.26{\sim}1.33$ kg $NH_4^{\;+}-N/m^3{\cdot}d$ and 62% average T-N removal efficiencies at the C/N ratio of 1. Moreover, average T-N removal efficiencies increased as the superficial air velocity increased, because of the increase $NH_4^{\;+}-N$ removal efficiencies.

  • PDF

A Study on the Micro-Formability of Al 5083 Superplastic Alloy Using Micro-Forging System (마이크로 단조 시스템을 이용한 Al 5083 초소성 합금의 마이크로 성형성에 관한 연구)

  • Son S. C.;Kang S. G.;Park K. Y.;Na Y. S.;Lee J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.432-438
    • /
    • 2005
  • Among the most of manufacturing process, plastic deformation method offers a significant advantage in productivity and enable mass production with controlled quality and low cost. From the point of view, micro forming is a well suited technology in manufacturing very small metallic parts, in particular for mass production, as they are required in many industrial products. Meanwhile, Al 5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. This paper describes the micro formability of Al 5083 superplastic alloy and its application to die forging of micro patterns. Micro formability tests of Al 5083 superplastic alloy were carried out with the specially designed micro forging system by using V-grooved micro dies and pyramidal dies made of (100) silicon. With these dies, micro forging was conducted by varying the applied load, material temperature and forging time The micro formability of Al 5083 superplastic alloy was evaluated by comparing $R_f$ value, where $R_f\;=\;A_f/A_v$ ($A_v$ : cross-sectional area of the flowed metal, $A_v$ : cross sectional area of V-groove). The micro formability of 3 dimensional Patterns was also evaluated using Pyramidal type micro dies.

Data Acquisition of Time Series from Stationary Ergodic Random Process Spectrums (정상 에르고드성을 가지는 확률과정 스펙트럼에 대한 합리적 시계열 데이터 확보)

  • Park, Jun-Bum;Kim, Kyung-Su;Choung, Joon-Mo;Kim, Jae-Woo;Yoo, Chang-Hyuk;Ha, Yeong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.120-126
    • /
    • 2011
  • The fatigue damages in structural details of offshore plants can be accumulated due to various environmental loadings such as swell, wave, wind and current. It is known that load histories acting on mooring and riser systems show stationary and ergodic bimodal wide-banded process. This paper provides refined approach to obtain time signals representing stress range histories from wide-banded bimodal spectrum which consists of ideally narrow-banded and fully separated two spectrums. Variations of the probabilistic characteristics for time signals according to frequency and sampling time increments are compared with the reference data to be the probabilistic characteristics such as zero-crossing period, peak period, and irregularity factor obtained from an assumed ideal spectrum. It is proved that the sampling time increment more affects on the probabilistic characteristics than frequency increment. The fatigue damages according to the frequency and sampling time increments are also compared with the ones with minimum increment condition which are thought to be exact fatigue damage. It is concluded that the maximum sampling time increment to obtain reliable time signals should be determined that ratio of applied maximum sampling time increment and minimum period is less than approximately 0.08.

13.56~915 MHz CMOS Rectifier Using Bootstrapping and Active Body Biasing (부트스트래핑과 능동 몸체 바이어싱을 이용한 13.56~915 MHz용 CMOS 정류기)

  • Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.932-935
    • /
    • 2015
  • This paper proposes a rectifier using bootstrapping and active body biasing in $0.11{\mu}m$ RF CMOS process. The proposed rectifier employs the full-wave rectifying structure with cross coupling and increases the power conversion efficiency by reducing the threshold voltage and leakage current using bootstrapping and active bias biasing. Also, it has been designed to be applied to a wide range of applications from 13.56 MHz used in wireless power transmission to 915 MHz used in RFID. As a measured result, 80 % of power conversion efficiency is obtained when the input power is 0 dBm at $10k{\Omega}$ load resistance and 13.56 MHz. Also 40 % of power conversion efficiency is shown in 915 MHz.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

A Case Study on Reinforcement of Ground and Foundation against Subsidence in Abandoned Mining Area (폐광지역 침하방지를 위한 지반 및 구조물기초 보강)

  • Kim, Do-Hyung;Choi, Chang-Rim;Kim, Dong-Hyun;Lee, Du-Hwa;Lee, Baek-Song;Je, Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2007
  • As the mechanism and effect range of subsidence are altered according to the various conditions (the ground condition, the earth pressure, the geometric condition of underground cavity and the structure load), the analysis and prediction of subsidence in abandoned mining area are very difficult. Also, as the geological characteristics and the mining methods are differed in each mines, the application of the pre-existing reinforcements without improvement has a lot of difficulties and limits. In this study, the various underground investigation such as long-depth core drilling, seismic tomography and BIPS (borehole image processing system) were performed, the distribution of underground cavity and coal seam and rock relaxation condition were analyzed. And we predicted the type of subsidence and estimated the subsidence by theories of mining subsidence. With these results, we analyzed the mechanism of subsidence occurrence in the research object area. Finally, we improved existing methods which were applied to the abandoned mining area and also we established the rational reinforcement for the ground and structure foundation against each subsidence cause.

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate (패키지 기판의 Warpage 해석을 위한 열팽창계수의 측정 및 평가)

  • Yang, Hee Gul;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1049-1056
    • /
    • 2014
  • Microelectronics components contain various materials with different coefficients of thermal expansion (CTE). Although a large amount of published data on the CTE of standard materials is available, it occasionally becomes necessary to measure this property for a specific actual material over a particular temperature range. A change in the temperature of a material causes a corresponding change in the output of the strain gage installed on the specimen because of not only the mechanical load but also the temperature change. In this paper, a detailed technique for CTE measurement based on these thermal characteristics of strain gages is proposed and its reliability is evaluated. A steel specimen, aluminum specimen, and copper specimen, whose CTE values are well known, were used in this evaluation. The proposed technique was successfully applied to the measurement of the CTE of a coreless package substrate composing of electronics packages.

In-plane elastic buckling strength of parabolic arch ribs subjected symmetrical loading (대칭 하중을 받는 포물선 아치 리브의 탄성 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.161-171
    • /
    • 2005
  • When the in-plane flexural rigidity is small in relation to the applied load, the arch ribs may buckle to the in-plane direction. Designers should therefore determine the in-plane buckling strength. To determine the buckling strength of arch ribs, designers have to consider the material nonlinear response. But in the case of arch ribs having large slenderness ratio, arch ribs may buckle in the elastic range, and when the arch ribs have low slenderness ratio, elastic buckling strength is useful in the preliminary design. In this paper, elastic buckling strength of arch ribs, which are frequently used in practical design, is studied using nonlinear finite element method. In general, the relation between flexural rigidity and elastic buckling strength is linear. As seen from the results, however, when the arch ribs have low slenderness ratio, the relation between flexural rigidity and elastic buckling strength is nonlinear.