• Title/Summary/Keyword: Applicable plant

Search Result 427, Processing Time 0.025 seconds

Development of a Driver for BLDC Motors Using Smart Communication Platform (스마트 통신 플랫폼을 적용한 BLDC 모터 드라이버 개발)

  • Lee, Injae;Basnet, Barun;Bang, Junho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.868-872
    • /
    • 2016
  • This paper presents the design of a BLDC motor driver applicable to various valve control systems using smart devices. BLDC motors are relatively small in size and have better performance than other motors. They help in reducing maintenance cost, installation costs and power consumption in plant facilities. The proposed driver is specially designed for BLDC motors using Smart Communication Platform. It adds smart features in the valve control system using BLDC motors such as multi-management, control, networking and monitoring in real time with the help of smart devices.

Performance Analysis of the Block Production Line in an Engine Production Plant (엔진 블록 가공라인의 물류분석)

  • 김상훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.105-109
    • /
    • 1999
  • Tool shop of the D Heavy Industries Co.(DHI) fabricates engines for a bus, truck, small ship. In order to increase the production capacity of engines, DHI will be established the new tool shop that consists of a block line, head line, assembly line, test line and AS/RS in 1999. In order to assure the production capacity designed of the new tool shop for producing engines and improve the production process of it, it is needed to find a bottleneck process and an optimal way of allocating workloads among machines and workers to maximize the production. In a way to solve this, we model the engine fabrication process of the tool shop and analyze its performance by computer simulation. In this study, we at first identify the bottleneck processes of the engine fabrication process under the designed operation policy. Then, we derive some alternative operating policies applicable to the new tool shop of an engine, and analyze the optimal operation policy by comparing the performance of the tool shop following each alternative policy.

  • PDF

Added Mass Estimation of Square Sections Coupled with a Liquid Using Finite Element Method

  • Jeong, Kyeong Hoon;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.234-244
    • /
    • 2017
  • Natural frequencies of immersed square sections decrease due to a contribution of added mass to the movement of square sections. In this study, natural frequencies of square sections are obtained as a function of gap size between the square section and a rigid square wall using the finite element method. Additionally, they are used to extract the added mass effect on translational and rotation motions. Published information and studies on the translational and torsional vibration of square beams are also examined for practical use. D coupling of a square section is also investigated for multiple square sections. The suggested added mass estimation can be applicable to the spent fuel storage design of a pressurized light water modulated nuclear power plant.

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

A Review on Measurement and Applications of Situation Awareness for an Evaluation of Korea Next Generation Reactor Operator Performance (상황인식에 대한 측정 및 차세대 원자로 운전원 성능 평가에서의 활용방법에 관한 이론 연구)

  • Lee, Dhong-Ha;Lee, Hyun-Chul
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.751-758
    • /
    • 2000
  • Situation awareness is defined as a person's perception of the elements of the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future. Situation awareness is important in attempting to evaluate human behavior in operating complex systems such as aircraft, air traffic control, and nuclear power plant systems. From the literatures this study reviews the relationship between situation awareness and numerous individual, system and environmental factors, and also reviews the methodologies for the empirical measurement of situation awareness applicable to Korea Next Generation Reactor (KNGR) design project. Attention, working memory, workload, stress, system complexity, and automation are presented as critical factors limiting operator's situation awareness. Mental models and goal-directed behavior are hypothesized as important mechanisms overcoming these limits. This study summarized hypothesized guidelines for interface design to improve situation awareness of reactor operators. Some of the guidelines should be tested in the KNGR evaluation experiments in the future.

  • PDF

A New Method for Assessing Dynamic Reliability for the Mid-loop Operation (원전의 부분충수운전에 대한 동적 신뢰도평가)

  • 제무성;박군철
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.52-59
    • /
    • 1996
  • This paper presents a new approach for assessing the dynamic reliability in a complex system such as a nuclear power plant. The method is applied to a dynamic analysis of the potential accident sequences which may occur during mid-loop operation. Mid-loop operation is defined as an operation to make RCS water level below the top of the flow area of the hot legs at the junction with the reactor vessel for repairs and maintenance of steam generators and reactor coolant pumps for a specific time. The Idea behind this approach consists of both the use of the concept of the performance achievement/requirement correlation and of a dynamic event tree generation method. The assessment of the system reliability depends on the determination of both the required performance distribution and the achieved performance distribution. The quantified correlation between requirement and achievement represents a comparison between two competing variables. It is demonstrated that this method is easily applicable and flexible in that it can be applied to any kind of dynamic reliability problem.

  • PDF

A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments (배전설비의 온라인 모니터링과 진단 기술 동향)

  • Lim, Wan-Soo;Lee, Tae-Woo;Yeo, Woon-Cheol;Lee, Sung-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

Determining the complexity level of proceduralized tasks in a digitalized main control room using the TACOM measure

  • Inseok Jang;Jinkyun Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4170-4180
    • /
    • 2022
  • The task complexity (TACOM) measure was previously developed to quantify the complexity of proceduralized tasks conducted by nuclear power plant operators. Following the development of the TACOM measure, its appropriateness has been validated by investigating the relationship between TACOM scores and three kinds of human performance data, namely response times, human error probabilities, and subjective workload scores. However, the information reflected in quantified TACOM scores is still insufficient to determine the levels of complexity of proceduralized tasks for human reliability analysis (HRA) applications. In this regard, the objective of this study is to suggest criteria for determining the levels of task complexity based on logistic regression between human error occurrences in digitalized main control rooms and TACOM scores. Analysis results confirmed that the likelihood of human error occurrence according to the TACOM score is secured. This result strongly implies that the TACOM measure can be used to identify the levels of task complexity, which could be applicable to various research domains including HRA.

Predicting of the $^{14}C$ Activity in Rice Plants Exposed to $^{14}CO_2$ Gas for a Short Period of Time ($^{14}CO_2$가스에 단기간 노출된 벼의 $^{14}C$ 오염 예측)

  • Jun, In;Lim, Kwang-Muk;Keum, Dong-Kwon;Choi, Young-Ho;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • This paper describes a dynamic compartment model to predict the time-dependent $^{14}C$ activity in a plant as a result of a direct exposure to an amount of $^{14}CO_2$ for a short period of time, and experimental results for the model validation. In the model, the plant consists of two compartments of the body and ears, and five carbon fluxes between the compartments, which are the function of parameters relating to the growth and photosynthesis of a plant, are considered. Model predictions were made for an investigation into the effects of the exposure time, the elapsed exposure time, and the model parameters on the $^{14}C$ radioactivity of a plant. The present model converged to a region where the specific activity model is applicable when the elapsed time of the exposure was extended up to the harvest time of a plant. The $^{14}C$ activity of a plant was predicted to be the greatest when the exposure had happened in the period between the flowering and ears-maturity on account of the most vigorous photosynthesis rate for the period. Comparison of model predictions with the observed 14C radioactivity of rice plants showed that the present model could predict the $^{14}C$ radioactivity of the rice plants reasonably well.