• Title/Summary/Keyword: Apple disease

Search Result 206, Processing Time 0.027 seconds

Occurrence of black shoot blight in apple and pear trees in Korea

  • Mi-Hyun Lee;Yong Hwan Lee;Seong Chan Lee;Hyo-Won Choi;Mi-Suk Yang;Jae Sun Moon;Suk-Yoon Kwon;Jun Myoung Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.723-734
    • /
    • 2023
  • Erwinia pyrifoliae, which causes black shoot blight in apple and pear trees, was first identified in Korea in 1995. Extensive measures are typically used to control the disease by eradicating trees in diagnosed orchards, owing to the detrimental impact of the disease on apple and pear production. However, despite governmental efforts, the disease has continuously spread. In this study, we analyzed the current status of the black shoot blight occurrence in apple and pear orchards between 1995 to 2022. Our findings reveal that over the past 28 years, black shoot blight has occurred in 26 cities and districts across five Korean provinces. The affected regions are predominantly concentrated in the northern part of Korea, including the Gangwon and Gyeonggi provinces. Furthermore, black shoot blight has gradually expanded to the northern provincial regions of Chungbuk, Chungnam, and Gyeongbuk, which are centrally situated in Korea. Furthermore, the occurrence pattern of black shoot blight differed between apple and pear orchards; in apple orchards, black shoot blight occurred consistently each year, with a sudden increase in cases in 2020; however, in pear orchards, it has considerably decreased since 2007. To the best of our knowledge, this is the first comprehensive report on the occurrence of black shoot blight in apple and pear trees in 28 years, and the results will provide valuable insights for future disease management strategies.

Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees

  • Yejin Lee;Gyeongjun Cho;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Fire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

First Report of Two Colletotrichum Species Associated with Bitter Rot on Apple Fruit in Korea - C. fructicola and C. siamense

  • Park, Myung Soo;Kim, Byung-Ryun;Park, In-Hee;Hahm, Soo-Sang
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.154-158
    • /
    • 2018
  • Bitter rot caused by the fungal genus Colletotrichum is a well-known, common disease of apple and causes significant yield loss. In 2013, six fungal strains were isolated from Fuji apple fruits exhibiting symptoms of bitter rot from Andong, Korea. These strains were identified as Colletotrichum fructicola and C. siamense based on morphological characteristics and multilocus sequence analysis of the internal transcribed spacer rDNA, actin, calmodulin, chitin synthase, and glyceraldehyde-3-phosphate dehydrogenase Pathogenicity tests confirmed the involvement of C. fructicola and C. siamense in the development of disease symptoms on apple fruits. This is the first report of C. fructicola and C. siamense causing bitter rot on apple fruit in Korea.

Cytochalasin E Production by Rosellinia necatrix and Its Pathogenicity on Apple (사과흰날개무늬병균의 Cytochalasin E 독소 생산과 병원성)

  • Lee, Dong-Hyuk;Choi, Kyung-Hee;Uhm, Jae-Youl
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2009
  • Cytochalasin E (CE) is a secondary metabolite secreted by Rosellinia necatrix, caused by white root rot, and has toxicity to apple as a toxin during disease progress. This study was conducted to demonstrate the relationship between the production of CE and its pathogenicity. CE producing isolates and non-producing isolates of R. nectatrix were isolated from the mycerial mat of diseased roots and was detected on that using a TLC and HPLC analysis and in vivo pathogenicity test. CE non-producing isolates were not pathogenic to apple roots and not detected CE by TLC and HPLC analysis. It was shown that the production of CE was related to the pathogenicity of R. nectatrix.

Identification of Differentially Up-regulated Genes in Apple with White Rot Disease

  • Kang, Yeo-Jin;Lee, Young Koung;Kim, In-Jung
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.

Occurrence and Analysis of Apple Blotch-like Symptoms on Apple Leaves

  • Back, Chang-Gi;Lee, Seung-Yeol;Kang, In-Kyu;Yoon, Tae-Myung;Jung, Hee-Young
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.429-434
    • /
    • 2015
  • Apple blotch-like symptoms (ABLS) were observed on 'Fuji' apple leaves in Cheongsong, Gunwi and Yeongcheon apple orchards located in Gyeongbuk Province during 2010-2014. Characteristics of ABLS were yellowing, brown spots on leaves, and defoliation, similar to apple blotch diseased (ABD) leaves, which are infected with Marssonina coronaria. It is difficult to differentiate by eye between ABLS and ABD, which has led to misdiagnosis and overuse of fungicides. The present study was conducted to investigate the cause of ABLS using stereomicroscopy, culture isolation, cross-sectional analysis of leaves, and PCR. No acervuli were found on the surface of ABLS leaves and no growth was observed on potato dextrose agar (PDA) plates in culture. Furthermore, cross-sectional analysis revealed similar results, and mycelia were absent in ABLS leaves. By contrast, all these characteristics were present in ABD leaves. Furthermore, no fungi or viruses were detected in ABLS leaves by PCR, suggesting that the disease is not caused by these agents. These findings suggest that ABLS might be a physiological disorder in plants that is distinct from ABD.

Detection and Distribution of Apple scar skin viroid-Korean Strain (ASSVd-K) from Apples Cultivated in Korea

  • Lee, Jai-Youl;Kwon, Mi-Jo;Hwang, Seung-Lark;Lee, Sung-Joon;Lee, Dong-Hyuk
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.342-344
    • /
    • 2002
  • Apple scar skin viroid (ASSVd) has been one of the most destructive diseases in Korean apple orchards. Symptoms of the scar skin viroid disease were detected in various apple cultivars, namely, Sansa, Fuji, Chukwang, Miki-Life, Hongro, and Songbongeum cultivated in the southern part of Korea. The RNA molecules were extracted from the apples bearing dapple apple symptoms with the application of CF-11 RNA extraction method. The purified RNAs were used for the synthesis of cDNA with RT-PCR. The PCR products were cloned and sequenced. The viroid RNA molecules from the six different cultivars bearing the dapple symptos showed the same nucleotide sequences as that of the Korean strain of ASSVd(ASSVd-K). ASSVd-K was detected from apple orchards in Kunwi, Sangju, Uiseong, Yeong-yang, Andong, and Youngduk in Gyeongbuk Province in 2001, and in Muju in Jeonbuk Province in 2002. As the viroid disease could be propagated vegetatively, it can be widely transmitted gradually in Korea.

Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

  • Li, Yan;Han, Li-Rong;Zhang, Yuanyuan;Fu, Xuechi;Chen, Xinyi;Zhang, Lixia;Mei, Ruhong;Wang, Qi
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.168-173
    • /
    • 2013
  • Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period.

Ecology of Marssonina Blotch Caused by Diplocarpon mali on Apple Tree in Kyungpook, Korea (사과나무 갈색무늬병의 발생생태)

  • Kim, Dong-Ah;Lee, Soon-Won;Lee, Joon-Tak
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.84-95
    • /
    • 1998
  • Apple Marssonina blotch, caused by Diplocarpon mali, which has been increasing on apple trees and become one of the most serious diseases on apple trees in Korea since the begining of 1990's. In this study, ecology of Marssonina blotch including disease incidence and spore dispersals was surveyed from 1992 to 1995 in Kyungpook, and factors influencing the incidence of the disease were analyzed. Marssonina blotch began to occur on apple leaves in June and was observed commonly in most of apple orchards after August, and increased rapidly in September. The incidence of this disease was high at the year of low temperature and a lot of precipitation. The conidia discharge began to occur in May and continued to October, and the peak period of spore release was in August and usually more than 70% of total spore release of the year released from August to September. The incidence of the disease was high in the northern and mountain are as such as Yeongjoo, Chungsong, Andong, and relatively low in the southern areas such as Kunwi, Yongchon. Jonathan cultivar was the most susceptible to Marssonina blotch, and Jonagold, Sekaiichi was secondly susceptible and the next Fuji was more susceptible than Tsugaru. The incidence of the disease was relatively high in orchards which cultivation management of irrigation, drainage, air circulation, fertilization, and fungicide spraying were poor.

  • PDF