• Title/Summary/Keyword: Appell functions

Search Result 38, Processing Time 0.023 seconds

GENERALIZATION OF EXTENDED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

  • Khan, N.U.;Ghayasuddin, M.
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.113-126
    • /
    • 2015
  • Recently, Liu and Wang generalized Appell's and Lauricella's hypergeometric functions. Motivated by the work of Liu and Wang, the main object of this paper is to present new generalizations of Appell's and Lauricella's hypergeometric functions. Some integral representations, transformation formulae, differential formulae and recurrence relations are obtained for these new generalized Appell's and Lauricella's functions.

SOME INTEGRAL REPRESENTATIONS AND TRANSFORMS FOR EXTENDED GENERALIZED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.321-332
    • /
    • 2017
  • In this paper, we generalize the extended Appell's and Lauricella's hypergeometric functions which have recently been introduced by Liu [9] and Khan [7]. Also, we aim at establishing some (presumbly) new integral representations and transforms for the extended generalized Appell's and Lauricella's hypergeometric functions.

THE INCOMPLETE GENERALIZED τ-HYPERGEOMETRIC AND SECOND τ-APPELL FUNCTIONS

  • Parmar, Rakesh Kumar;Saxena, Ram Kishore
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.363-379
    • /
    • 2016
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] and the second Appell function [Appl. Math. Comput. 219 (2013), 8332-8337] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we introduce here the family of the incomplete generalized ${\tau}$-hypergeometric functions $2{\gamma}_1^{\tau}(z)$ and $2{\Gamma}_1^{\tau}(z)$. The main object of this paper is to study these extensions and investigate their several properties including, for example, their integral representations, derivative formulas, Euler-Beta transform and associated with certain fractional calculus operators. Further, we introduce and investigate the family of incomplete second ${\tau}$-Appell hypergeometric functions ${\Gamma}_2^{{\tau}_1,{\tau}_2}$ and ${\gamma}_2^{{\tau}_1,{\tau}_2}$ of two variables. Relevant connections of certain special cases of the main results presented here with some known identities are also pointed out.

ON SOME FORMULAS FOR THE GENERALIZED APPELL TYPE FUNCTIONS

  • Agarwal, Praveen;Jain, Shilpi;Khan, Mumtaz Ahmad;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-850
    • /
    • 2017
  • A remarkably large number of special functions (such as the Gamma and Beta functions, the Gauss hypergeometric function, and so on) have been investigated by many authors. Motivated the works of both works of both Burchnall and Chaundy and Chaundy and very recently, Brychkov and Saad gave interesting generalizations of Appell type functions. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present some new differential formulas for the generalized Appell's type functions ${\kappa}_i$, $i=1,2,{\ldots},18$ by considering the product of two $_4F_3$ functions.

NEW TRANSFORMATIONS FOR HYPERGEOMETRIC FUNCTIONS DEDUCIBLE BY FRACTIONAL CALCULUS

  • Kim, Yong Sup
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1239-1248
    • /
    • 2018
  • Recently, many authors have obtained several hypergeometric identities involving hypergeometric functions of one and multi-variables such as the Appell's functions and Horn's functions. In this paper, we obtain several new transformations suitably by applying the fractional calculus operator to these hypergeometric identities, which was introduced recently by Tremblay.

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

EXTENDED HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • AGARWAL, PRAVEEN;CHOI, JUNESANG;JAIN, SHILPI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.403-414
    • /
    • 2015
  • Extensions of some classical special functions, for example, Beta function B(x, y) and generalized hypergeometric functions $_pF_q$ have been actively investigated and found diverse applications. In recent years, several extensions for B(x, y) and $_pF_q$ have been established by many authors in various ways. Here, we aim to generalize Appell's hypergeometric functions of two variables and Lauricella's hypergeometric function of three variables by using the extended generalized beta type function $B_p^{({\alpha},{\beta};m)}$ (x, y). Then some properties of the extended generalized Appell's hypergeometric functions and Lauricella's hypergeometric functions are investigated.

THE INCOMPLETE LAURICELLA AND FIRST APPELL FUNCTIONS AND ASSOCIATED PROPERTIES

  • Choi, Junesang;Parmar, Rakesh K.;Chopra, Purnima
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.531-542
    • /
    • 2014
  • Recently, Srivastava et al. [18] introduced the incomplete Pochhammer symbol and studied some fundamental properties and characteristics of a family of potentially useful incomplete hypergeometric functions. Here we introduce the incomplete Lauricella function ${\gamma}_D^{(n)}$ and ${\Gamma}_D^{(n)}$ of n variables, and investigate certain properties of the incomplete Lauricella functions, for example, their various integral representations, differential formula and recurrence relation, in a rather systematic manner. Some interesting special cases of our main results are also considered.

SOME τ-EXTENSIONS OF LAURICELLA FUNCTIONS OF SEVERAL VARIABLES

  • KALLA, SHYAM LAL;PARMAR, RAKESH KUMAR;PUROHIT, SUNIL DUTT
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Motivated mainly by certain interesting extensions of the ${\tau}$-hypergeometric function defined by Virchenko et al. [11] and some ${\tau}$-Appell's function introduced by Al-Shammery and Kalla [1], we introduce here the ${\tau}$-Lauricella functions $F_A^{(n),{\tau}_1,{\cdots},{\tau}_n}$, $F_B^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and $F_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and the confluent forms ${\Phi}_2^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and ${\Phi}_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ of n variables. We then systematically investigate their various integral representations of each of these ${\tau}$-Lauricella functions including their generating functions. Various (known or new) special cases and consequences of the results presented here are also considered.

THE GENERALISED INTEGRATION BY PARTS FORMULA FOR APPELL SEQUENCES AND RELATED RESULTS

  • Dargomir, S.S.
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.75-92
    • /
    • 2004
  • A generalised integration by parts formula for sequences of absolutely continuous functions that satisfy the ${\omega}-Appell$ condition and different estimates for the remainder are provided. Applications for particular instances of such sequences are pointed out as well.