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THE GENERALISED INTEGRATION
BY PARTS FORMULA FOR APPELL
SEQUENCES AND RELATED RESULTS

S. S. DRAGOMIR

ABSTRACT. A generalised integration by parts formula for sequen-
ces of absolutely continuous functions that satisfy the w—Appell
condition and different estimates for the remainder are provided.
Applications for particular instances of such sequences are pointed
out as well.

1. Introduction

In [6], Matié et. al introduced the concept of harmonic sequences
of polynomials by assuming that the polynomial {P,}, .y satisfies the
condition
(1.1) Py=1, P,(t)y=P,_1(t) forallteR and neN.

With this assumption, they proved the following generalised Taylor’s
formula:

THEOREM 1. Let I C R be a closed interval anda e I. If f: I — R
is any function such that, for some n € N, f( js absolutely continuous,
then for any x € I

f@)=fla)+) (-1
k=1

(1:2) x [P (@) £%) (@) = P (a) /¥ (@)] + Ra (f30,2),
where
(13) Ro(fiao)= (1" [ P s () ar
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and {Py},cn is a harmonic sequence of polynomials.

As examples of such polynomials, they mentioned the following

1
P, (t) = — py t-2z)", tekR;
or
1 a+z\"
Pa(t) =~ (t—- . ) . teR;
or
n
Bo(t) =& ,“) Bn<t “) ,n>1, Py(t) =1,
n! T—a
where By, (-) are the Bernoulli’s polynomials, or
—a\" t—
Pot) =@ '“) En( “) ,n>1, Py(t) =1,
n! r—a

where E, (-) are the Fuler’s polynomials.
Amongst others, they proved the following general estimation result
for the remainder R, (f;a,x).

COROLLARY 1. Under the assumptions of Theorem 1 and if x > a,
then

( max |P, (t)] [F |f("+1) (s)| ds;

max_|f("+D) ()| [T | Pn (s)] ds;
(14)  |Ra(f;a,2)| < €7

1
(f |P, (s |qu ( |f(n+1) |pds)p,
where % 5t 32 1-1,p>1

\

Now, if one would choose in (1.2) f g (t)dt and put z = b, we
could then state the following generahsed 1ntegrat10n by parts formula

n

(15) / Tod = 30 (-1 [P (6) %7 (8) = Pi (@) g%V ()]

k=1

Sn(f;a,b),

where

b
(1.6) Su (f1a,b) = (~1)" / Py (t) g (t)dt
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Using the classical notation for the Lebesgue norms,

|hlle = ess sup |R(t)],
) t€la,b]

121l (/ab |h(t)|pdt)%  p>1

the remainder (1.6) may be bounded in the following manner

1.7 |Sa(g;a,0) < { IPally |lg™]l,,

||Pn“q ||g(")|lp, where % + % =1,p> 1

For other results based on the integration by parts formula (1.5), see
[1]-[5] and [7]-[9].

2. The generalised integration by parts formula

We shall start with the following definition.

DEFINITION 1. Let w : [a,b] — R be an absolutely continuous func-
tion on [a, b]. The sequence of absolutely continuous functions {w };_q57
(n > 1) defined on |[a, b] are said to be of w— Appell type if

(2.1) wp =w a.e. on [a,b;

(2.2) wj, = wg_, a.e. on [a,b], forallk=1...,n.

REMARK 1. It is obvious that any sequence of harmonic polynomials
is a sequence of w—Appell type with w = 1.

REMARK 2. Having given an absolutely continuous function w :
[a,b] — R we may construct a sequence of w—Appell type in the follow-
ing canonical fashion:

t
wi (t) = /w(s)ds+cl,t€[a,b],cleR;

¢
we (t) = /wl(s)ds+cz,t€[a,b],czeR;

¢
wp (t) = /wn_l(s)ds+cn,te[a,b],anIR.
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The following generalised integration by parts formula associated
with the sequence {wy} k=07 naturally holds.

LEMMA 1. Let w : [a,b] — R be an absolutely continuous function
on [a,b] and {wk};_g7 & sequence of w—Appell type. If g : [a,b] — R is
such that g»~Vis absolutely continuous on [a,b] and w,g™ € L1 [a,b],
then we have the equality

b
(2.3) / w(t) g (t)dt = An (w, 9:0,b) + Ra (w,9;a,b),
where
(2.4) An(w,g:0,6) = 3 (—1)F [ ) 9 (8) — i (@) g+ (a)]
k=1
and
b
(2.5) R (0,9;0,b) = (~1)" / wn (£) g (1) dt.

PROOF. We prove (2.3) by mathematical induction.
For n = 1, we have

b b
/ w(t) g () dt = wy (b) g (5) - wy (a) g (a) ~ / wy (£) g (8) dt

which follows on applying the integration by parts formula taking into
account that wj = w a.e. on [a, b).

Assume that (2.3) holds for m € {1,...,n — 1}, i.e,

b
/ w(t)g(t)dt

(=1 [ () g%V () = wi () g7 (@)]

Ms

(2.6)
k=1

b
(—1)™ / wn (£) g™ (2) dt.

+
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As w,, and g'™ are absolutely continuous and w/,, . ; = w, a.e. on [a,b],
then, by the integration by parts formula we may write

(2-7)/b wi () g™ (B dt = /b Wl (8) g™ (2) dt
= Wt () g™ (b) — w1 (a) g™ (a)
b
- [ i g @y

Using (2.6), we get

NE

b
[w®aa = 30" [we @)% 0) - v (@) g (@)

&
Il

1

(1ym [wm+1 () g™ () = winar (a) g™ (a)

-+

b
- [ w9 @ dt]
m—+1

= 3 D [ (0) g7 (1) - wi (0) gV (@)

k=1
b
(-1 / W (£) g™ (6)
a

showing that (2.3) holds for n =m + 1 as well.
The lemma is thus proved. t

REMARK 3. If wy = Py, {Pn},en I8 @ sequence of harmonic polyno-
mials, then by (2.3) we recapture the identity (1.6).

The following result concerning estimates of the remainder R, (w, g; a,
b) holds.

THEOREM 2. With the assumptions of Lemma 1, we have the esti-
mates:
(2.8)

fwally |9, if wn € L1]a,b], g™ € Loo [a,b];

R (g;0,0)| < { lwnll [l9™|,  if wn € Lqfa,b], g™ € Ly a,b];
lwalloo 19|, if wa € Loo [a,b].
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The proof follows by the representation (2.5) and Holder’s inequalities
for ||-||,, —norms (p € [1, cc]).

In what follows, we point out a number of useful examples.

1. Define wél) (t) := e, a € R\ {0} and consider the sequence
w,(:) (t) := %eat, k=0,1,.... Then

dwM (t
wl:it( ) - akl—leat —wM (t), for k=1,2,...

showing that {w,(cl) }k is an w(()l)—AppeH type sequence.

eN
If we use Lemma 1, we may state the identity:

n

29) [etgar = 3 I eanyeon 5) - omgiton o)

k=1
+(—1)——/ etg™ (1) dt.

o

As
b at b ab _ paa
lwgl) :/ € ldgt = ln/eatdt_—_ 1n.e € ,
1 Jg o la" Jo |o o
b at|d 2
q a | &
b 1 b 1
_ —1—”- (/ eaqtdt>q _ ln ed4® _ 29 q’
o™ \Ja |al aq
1 1
(1)“ _ at{ _ _~ aa ob
w = 7 sup eV = —7 max4e™,e
o], = o g e = e e e,

1 . eaa+eab+ !eaa __eab,
laf™ 2 '
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Then, by Theorem 2 we may state the inequality:

b at o < (—l)k_l ab_(k—1) _ yoa, (k-1)
(2.10) etq(t)dt = [e g*=D () — eag (a)]
@ k=1
’ eab — eQa )
l—lml——' 19| if g™ € Lo [a,b];
1 qb ga |z
aqo _ q
S oEl e | 1ol e e Zylo s
and %+%=1,p>1;
1 e | e + Ieaa _ eabl
' g™l
\ lae|™ 2 1

where a € R\ {0}.
2. Define w((f) (t) =t*, a > —1 and consider

w? (t) = e L k=0,1,....
k (a+1)(a+2) - (ax+k)
Then
dwi! (1) gkl @
= = t),fork=1,2,...
dt (a+1)(a+2)-(a+k—-1) Wi (1), for EEE
which shows that {w,(f)}k_ is a w(()2)—Appell type sequence.
If we use Lemma 1, we m’aifmstate the identity:
b n poatkq(k=1) () — qatk (k—1)
(2.11) / g () dt =3 (-1 (g () — a™tg ™D (a)]
a — (a+1)(a+2) - (x+k)
="

b
(a + 1) e (a + n) /a t04+ng(n) (t) dt: [a7 b] € (O, OO) .

As, for [a, b] C (0, c0),

+

],
b ta+n ba+n+1 _ aa+n+1
/a (a+1)---(a+n) (a+1) - (a+n)(a+n+1)
(b—a) '

- (a+1)---(a+n)LgiZ(a’b)’
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where

b if a=b

Lm (a’ b) = |: pm+l _ gm+1
(

m+1)(b—a)] if a7b

is the m—logarithmic mean, m € R\ {—1,0}; and for ¢ > 1

b a+n q
’ ”LU*S;,z) ‘ = (/ t dt) q
- 1
(a+1)--(a+n)
1. {atn)g
platnlgtl _ g(atn)e+] 7 (@¥n)q
(b a)
((a+n)g+1)(b—a)
1
= (b _ a)?f a+n
= (a+1).-.(a+n)L(a+n)q(a,b),
and, finally
a+n
(2) _ t
Wy, - sup
I oo te[a,b) (a+1)(a+n)

1
— ba+n >1
@+ 1) (atn) "=

then by Theorem 2, we may state the inequality

1) | [Eg@a-y -
2.12 / t%g (t)dt —
a k:l(a+1)(a+2)'“(a+k)
etk (k=1) () _ gotk (k=1
BTG (b) — g (a)
( (b—a) Lg17 (a,0) | (0 i
n f (n) oo bl ;
(a+1)...(a+n)”9 [ it g™ € Looa, b
1
b—a)s LY (a,b
< | (b—a)s L, ( )”gm)”p if g™ elL,la,b];

(a+1)---(a+mn)
and %+%=1,p>1;

ba+n
if g™ e Liab,

\ (Oz+1)'-~(a+n) ”g(n)Hl
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for all o > —1.
3. Define w(()g) (t) = sin (at), @ € R\ {0} and consider the sequence

wl(j) )= (1" sin (at +k- —g—) .

ok
Then
dw,(es) (t) (=1)* T (=% r T
7 = ~—_j acos [at +k- 5] = =1 sin [5 - (at + 5)]
(=R o
= —p-rsin (at + k§ 2)
1)kl

= w (t), teR,

which shows that {w,(f) N is an 'w(()?') —Appell type sequence.

If we use Lemma 1, we may state the identity

(2.13) / ' sin (at) - g (6) di
= ; ik [sin <aa + kg) . gtk=1) (a) — sin (ab + kg—) A (b)}

(67
k=1

1 s
il i ZY g™
+a"/a 81n<at+k2)g (t) dt.

We compute
1
1 b . 5 T 2
, = I:ﬁ/c; sin (at-l—nE) dt]

- [ [ dtf

= I?zll_" B- (b—a)— % [sin (206 + nr) — sin (200 + ”W)]]

_ (- a)% [1 _ sin (2ab + nr) — sin (2aa + nw)] 2
V2|al® 2a(b—a) '

w®

|

EY
2
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Consequently, using Theorem 2 for Hilbertian norms, we may state
that

b
(2.14) / sin (at) g (t) dt

- k}; % [sin (aa + kg) g% (a)

—sin (ab + kg) . gk=1) (b)]

g™

)

(b— a)% [1 _ sin (2ba + nm) — sin (2a0 + nw)] 2
\/2- |a1n 2c (b — a)

provided ¢ € Ly [a, b].

4. Define w((]4) (t) = cos(at), o € R\ {0} and consider the sequence
wi (¢)
= (;alkﬁ cos (ot + k- ). Then

4) _1)k T —1)k- T
M = G [resnfar ek 3] = Gl e 47)
(=)

= cos [g - (at + kg)]

()" cos [at +(k—1) g]

ak-1

= w,(f_)l (t), teR,

which shows that {w,(f)} . is an w(()4)-—Appell type sequence.

If we use Lemma 1, we m’a&“state the identity

(2.15) /b cos (at) g (t) dt
= “ al—,; [cos (aa + kg) . g%V (a) — cos (ab + kg) gD (b)}
=1

X

+

b
el TN g™
/a cos (at+k2)g (¢) dt.

an
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‘We compute

1
1 [P 2
(4) = =
‘wn , [a%/a cos (at—l—n )dt}
1
1 /b 1+ cos(2at +n-7) 2
= — dt
laf™ /e 2
- ]! (b—a)+ ! [sin (2ab + nm) — sin (2aa + n)] :
o™ |2 4o
(b~ a)% [ sin (2ab + nw) — sin (2aa + nw)} 2
V2ol 2a(b—a)
Consequently, using Theorem 2 for Hilbertian norms, we may state
that
(2.16)
b
/ cos (at) g (t) dt

S = [cos (aa+ 5% ) - g% (a) — cos (ab+ K3 ) - oD ()]

7

(n)
77,

(- a)% 14 sin (2ba + nw) — sin (2ac + nr) 2
20:(b—a)

provided ¢ € Ly [a,b].

3. A perturbed version via Korkine’s identity

The following identity which can be easily proved by direct compu-
tation is known in the literature as Korkine’s identity:

b b .
(3.1) b—i—/ wwon- 2 [uoa L Mo
—a) // (u(t) —u(s)) (v(t) — v (s))dtds,

prov1ded that u,v : [a,b] — R are measurable and all the involved
integrals exist.
The following representation of the weighted integral f t)g(t)dt

holds.
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LEMMA 2. Let w : [a,b] — R be an absolutely continuous function
on [a,b] and {wy};_g777 be a sequence of w—Appell type. If g : [a,b] —
R is such that g(*~!) is absolutely continuous on [a,b] and w,g™ €
Ly [a,b], then we have the equality

(3.2) /bw (t)g(t)dt = By (w,g;a,b) + Sp (w, g;a,b),

where

(3.3)

Bn (’LU, g;a, b) = An (UJ, g;a, b)+(—'1)n [wn+1 (b) — Wn+1 (a’)] [g(n—l); a, b}
and the remainder S, (w, g;a,b) can be represented by

(3.4) S (w g, a,b)

“a) / / (wn (t) — wn (5)) (g(n) (t) — g™ (s)) dtds

where [g(" 1); a, b] is the devided difference, i.e., we recall that

-1 -1
[g(n—l);a7b] - g1 (b) — g )(a)'
b—a
PrOOF. Using Korkine’s identity, we may write

/ ", (t) g™ (t) dt

b

b
= 2 [y / o™ (8) dt
b—a/, @

+2—@—1_~a—) / b ] (e (1) — wn (5) (9" (1) = 9 (s)) dtds

gV () = g (a)
b—a

s | 0= (o) (6 0 — o () s,

giving the followmg representation for the remainder R, (w, g; a, b):

R, (w, g;a,b)

= (=" [wn+1 (b) — Wny1 (@)] -

= [Wn+1(b) — w41 (a)] -

g* =V (b) — g% (a)
b—a

(wn, () — wp (s)) (g(n) (t) — g™ (s)) dtds.
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Using the identity (2.3) we deduce (3.2). O

For an absolutely continuous function h : [a, 8] — R, we denote

B
|h(7)dT].

Hh‘|[a,g],1 =

Using this notation, we may state the following result involving the
estimation of the remainder S (w, g; a,b) in the perturbed formula (3.2).

THEOREM 3. With the assumption of Lemma 2, we have

IS (w, g; a, b)|
1 b b
- (n+1)
65 < ggem [ [ty s, s

=: M, (wn+1,9(n+1)) .

Proor. Using the representation (3.4), we may write

IS (w, g; a,b)|
1 b rb
= T— / / [ (£) = wn (5)] |9 (1) = g (s)] dtds
¢
T 20b-a) wn+1 T)dr / ¢™*Y (o) do| dtds
= a)/ / ”wn+1”st g(n—H)“ dtds
and the estimate (3.5) is obtained. 0O

In practical applications some bounds of M, (wn_,_l, g(”+1)) could be
more useful.
Now, it obvious that

M, (wn+17 9(n+1))

1
ess su Wn s
T {Iwnsilli g}

- s et

dtds
[s,t],1

(A

b
‘ gD
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Also, by Holder’s integral inequality for double integrals, we may write
that

1
1 b rb q
(n+1) q
M (“’"“’g ) S Sh-a) (/ /a ”“’"+1”[s,t1,1dtd3)
1

([

!

gt dtds) ’
[s,t],1
_ 2_(1)1__;) Nuwmu[,,,],lHq ”k g(n+1)“[.’.]’1 R
where;}+%=1,P>1-
In a similar manner,
M, (wn+1a9(n+1)) = 2(b1— a) l'l'w"+1ll["'1>1”1 ‘g(nﬂ)“[w'l,l o

-Consequently, we may state the following corollary.

COROLLARY 2. With the assumptions of Lemma 2, we have the fol-
lowing bounds for the remainder S, (w, g; a, b):

( eomsall ]| el

1 .
2(b—a) 1!

“’wn+1“[.,.],1“q ”||9(n+1)”[.,-],1u

1
(36) |Sn(w,g;a,b)| < g 27
p>1, %+ % =1

s
p

| e Jlnatiaal, 2l

where ||-||, (s € [1,00]) are the usual Lebesgue norms on
Ls ([a, 6] x [a, B))*.

Now, if we use the natural notations

[

1Pl 61,00 = esssup{lh ()], T € [t, 5] ([s,2])},
then by Holder’s integral inequality, we have

Tl

Al 5= L B>1

and

1
lwntillfs g1 < I8 — ¢l [wnsillis .8
1 1
(3.7) ﬂ>1,—ﬂ—+a—1 or a=1, =00
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and

(38) gV

[s,t],1

S |3 _ﬂ% g('n+1)H

0
Multiplying (3.7) and (3.8) and integrating over (¢, s) € [a,b

(3.9) M, (wn+1, g<"+l>)

I R ast T T P
- 2 (b —_ a) a a [S7t];ﬁ

where o, 8 > 1, %+é=lora=l,ﬁ=oo;’y,6>l, %+%=10r7=1
and § = oo, which is an inequality interesting in itself.

The terms M, (wn+1, g(""'l)) can be bounded in a simpler form as
follows.

1 1
>1, —+=-=1 =1, § =o00.
s’ v 5 + or vy 00
12, we deduce

dtds,
[s,t],8

COROLLARY 3. With the assumptions of Lemma 2 and if o, 3, 7y, 0
are as above and r; > 1, (z = 1,3), % + ;15 + % = 1, then we have the
inequality:

(3.10) M, (wn+1, g("“)) < K,

g(n+1)|'

”wn+1”[.’.]’ﬁ 3

[.’.]’5

T2 r3

where
g1 (b— a)§+%+;21——1
(G+)m+1]7 [E+Hm+2]

o7

K, =

1 -
1

PRroOF. Using Holder’s integral inequality for three terms with »; >

1, ;1-;+%+;13— = 1, we may write:

b b 1,1
(3.11) / / |s —t|=" “wn+1||[s,t],ﬁ’
a a
1
b b 1
< (/ / s — {5+ dtds) 1
b b "
X (/ / lwnrllis g 0 dtds>
a a
b b T3 %
X (/ / dtds)
o Ja [s.t].6

g(n+1)

dtds
[s,t],6

g(n+1)
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< ([ [t >

i

sl s

We remark that, for a positive p, we have

/ab/ab|:c—y|pd:1:dy
_ /ab(/ab|y—x|pdy>dx
- /ab(/:m—y)”dw/:(y—x)f’dy)dx

_ /b I:(:c—a)p+1+(b—x)p+1J dp — 2(b— a)P*t?

p+1

(//M )’
_ [ b—a)l

5l
L1
r1+1] [(2+2)r+2]

r+1)(@+2)
and then

)7‘1 +2 1

)
nl+an+ﬂnué+@n+ﬂ%'

24

Using (3.9) and (3.11) we obtain (3.10).

O

REMARK 4. If one would use the examples 1-4 considered in Section

2, some particular inequalities may be stated. We omit the details.

4. Some bounds via a Griiss type inequality

In [4], Cheng and Sun have proved the following integral inequality

of Griiss type for univariate real functions:

LEMMA 3. Let h, g : [a,b] — R be two integrable functions such that

(4.1) p<g(x)<dforae z€lab].
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(4.2) ’bia/abh(t)g(t)dt—b—i&/abh(t)dt.bia/abg(t)dt‘
1

b b
< 509 [he - [he)as

For a generalization of this result in the abstract settings of Lebesgue
integrals and weighted means, see [3].
The following result also holds.

dt.

THEOREM 4. Let w : [a,b] — R be an absolutely continuous function
on [a,b] and {wr } g7 be a sequence of w—Appell type. If g : [a,b] —

R is such that g»1) is absolutely continuous on [a, ], wng™ € L1 [a, b],
and there exists the constants v,, T, so that

—00 <Y, < g™ < T, < 0 ae. on [a,b],

then we have the equality

b
/ w(t) g (t) dt = By (w,g;a,b) + Sy (w, g;a,b),
where
By, (w, g;a,b)
(4.3) = An(w,g;0,b) + (=1)" [Wny1 (b) — Wnya (a))] [g(”‘l);a, b},

Ay (w, g;a,b) is given in equation (2.4) and the remainder S, (w, g; a, b)
satisfies the estimate

b
(4'4) |Sﬂ (w’g; a, b)l S (Fn - "Yn) / Iwn (t) - [wn+1§ a, b]' dt

NN

where [wn41; a, b] is the devided difference.
Proor. From (3.4) we have

Sn (w7gv a7b)

1

b
= -0 = [(w g™ @ et

1 b

1 b
_ = (n)
o awn(t)dt b-—a/ag (t)dt'.
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Thus, by the use of Lemma 3 we have
[Sn (w, g; a,b)]

< 3@ [ fon -5 [(unioyas

and the theorem is proved. tl

dt

REMARK 5. If one would use the examples 1-4 considered in Section
2, some particular inequalities may be stated. We omit the details.
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