• Title/Summary/Keyword: Appell's series

Search Result 17, Processing Time 0.023 seconds

ON THE SPECIAL VALUES OF TORNHEIM'S MULTIPLE SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.305-315
    • /
    • 2015
  • Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680-685] established an explicit formula for the integral of the product of several Appell polynomials. Their work generalizes all the known results by previous authors on the integral of the product of Bernoulli and Euler polynomials. In this note, by using a special case of their formula for Euler polynomials, we shall provide several reciprocity relations between the special values of Tornheim's multiple series.

NEW TRANSFORMATIONS FOR HYPERGEOMETRIC FUNCTIONS DEDUCIBLE BY FRACTIONAL CALCULUS

  • Kim, Yong Sup
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1239-1248
    • /
    • 2018
  • Recently, many authors have obtained several hypergeometric identities involving hypergeometric functions of one and multi-variables such as the Appell's functions and Horn's functions. In this paper, we obtain several new transformations suitably by applying the fractional calculus operator to these hypergeometric identities, which was introduced recently by Tremblay.

ON SOME FORMULAS FOR THE GENERALIZED APPELL TYPE FUNCTIONS

  • Agarwal, Praveen;Jain, Shilpi;Khan, Mumtaz Ahmad;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-850
    • /
    • 2017
  • A remarkably large number of special functions (such as the Gamma and Beta functions, the Gauss hypergeometric function, and so on) have been investigated by many authors. Motivated the works of both works of both Burchnall and Chaundy and Chaundy and very recently, Brychkov and Saad gave interesting generalizations of Appell type functions. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present some new differential formulas for the generalized Appell's type functions ${\kappa}_i$, $i=1,2,{\ldots},18$ by considering the product of two $_4F_3$ functions.

A NOTE ON CERTAIN TRANSFORMATION FORMULAS RELATED TO APPELL, HORN AND KAMPÉ DE FÉRIET FUNCTIONS

  • Asmaa Orabi Mohammed;Medhat Ahmed Rakha;Arjun K. Rathie
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.807-819
    • /
    • 2023
  • In 2019, Mathur and Solanki [7, 8] obtained a few transformation formulas for Appell, Horn and the Kampé de Fériet functions. Unfortunately, some of the results are well-known and very old results in literature while others are erroneous. Thus the aim of this note is to provide the results in corrected forms and some of the results have been written in more compact form.

REMARKS FOR BASIC APPELL SERIES

  • Seo, Gyeong-Sig;Park, Joong-Soo
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.463-478
    • /
    • 2009
  • Let k be an imaginary quadratic field, ℌ the complex upper half plane, and let ${\tau}{\in}k{\cap}$ℌ, q = exp(${\pi}i{\tau}$). And let n, t be positive integers with $1{\leq}t{\leq}n-1$. Then $q^{{\frac{n}{12}}-{\frac{t}{2}}+{\frac{t^2}{2n}}}{\prod}^{\infty}_{m=1}(1-q^{nm-t})(1-q^{nm-(n-t)})$ is an algebraic number [10]. As a generalization of this result, we find several infinite series and products giving algebraic numbers using Ramanujan's $_{1{\psi}1}$ summation. These are also related to Rogers-Ramanujan continued fractions.

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.