• Title/Summary/Keyword: Appell's function $F_1$

Search Result 14, Processing Time 0.026 seconds

SOME SUMMATION FORMULAS FOR THE APPELL'S FUNCTION $F_1$

  • Choi, June-Sang;Harsh, Harshvardhan;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.233-237
    • /
    • 2001
  • The authors aim at presenting summation formulas of Appell's function $F_1$: $$F_1(a;b,b';1+a+b-b'+i;1,-1)\;(i=0,\;{\pm}1,\;{\pm}2,\;{\pm}3,\;{\pm}4,\;{\pm}5)$$, which, for i=0, yields a known result due to Srivastava.

  • PDF

FURTHER SUMMATION FORMULAS FOR THE APPELL'S FUNCTION $F_1$

  • CHOI JUNESANG;HARSH HARSHVARDHAN;RATHIE ARJUN K.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.223-228
    • /
    • 2005
  • In 2001, Choi, Harsh & Rathie [Some summation formulas for the Appell's function $F_1$. East Asian Math. J. 17 (2001), 233-237] have obtained 11 results for the Appell's function $F_1$ with the help of Gauss's summation theorem and generalized Kummer's summation theorem. We aim at presenting 22 more results for $F_1$ with the help of the generalized Gauss's second summation theorem and generalized Bailey's theorem obtained by Lavoie, Grondin & Rathie [Generalizations of Whipple's theorem on the sum of a $_3F_2$. J. Comput. Appl. Math. 72 (1996), 293-300]. Two interesting (presumably) new special cases of our results for $F_1$ are also explicitly pointed out.

  • PDF

SOME τ-EXTENSIONS OF LAURICELLA FUNCTIONS OF SEVERAL VARIABLES

  • KALLA, SHYAM LAL;PARMAR, RAKESH KUMAR;PUROHIT, SUNIL DUTT
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Motivated mainly by certain interesting extensions of the ${\tau}$-hypergeometric function defined by Virchenko et al. [11] and some ${\tau}$-Appell's function introduced by Al-Shammery and Kalla [1], we introduce here the ${\tau}$-Lauricella functions $F_A^{(n),{\tau}_1,{\cdots},{\tau}_n}$, $F_B^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and $F_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and the confluent forms ${\Phi}_2^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and ${\Phi}_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ of n variables. We then systematically investigate their various integral representations of each of these ${\tau}$-Lauricella functions including their generating functions. Various (known or new) special cases and consequences of the results presented here are also considered.

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

ON SOME FORMULAS FOR THE GENERALIZED APPELL TYPE FUNCTIONS

  • Agarwal, Praveen;Jain, Shilpi;Khan, Mumtaz Ahmad;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-850
    • /
    • 2017
  • A remarkably large number of special functions (such as the Gamma and Beta functions, the Gauss hypergeometric function, and so on) have been investigated by many authors. Motivated the works of both works of both Burchnall and Chaundy and Chaundy and very recently, Brychkov and Saad gave interesting generalizations of Appell type functions. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present some new differential formulas for the generalized Appell's type functions ${\kappa}_i$, $i=1,2,{\ldots},18$ by considering the product of two $_4F_3$ functions.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-204
    • /
    • 2011
  • B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.