• Title/Summary/Keyword: Apoptosis assay

Search Result 1,370, Processing Time 0.032 seconds

Mitochondria-mediated Apoptosis in Human Lung Cancer A549 Cells by 4-Methylsulfinyl-3-butenyl Isothiocyanate from Radish Seeds

  • Wang, Nan;Wang, Wei;Huo, Po;Liu, Cai-Qin;Jin, Jian-Chang;Shen, Lian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2133-2139
    • /
    • 2014
  • 4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a wellknown anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (${\Delta}{\Psi}m$), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC.

A study on the practicability of genotyping and cytotoxicity of Actinobacillus actinomycetemcomitans isolated from periodontal patients (Actinobacillys actinomycetemcomitans의 유전자형의 유용성과 세포독성에 관한 연구)

  • 조월순;정민호;이상화;황희성
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • The purpose of this study was to evaluate the genotypic characterization of Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) using arbitrarily primed polymerase chain reaction (AP-PCR), to investigate the cytotoxicity of both clinical isolates and standard strains of A. actinomycetemcomitans for the human Jurkat T cells, and to measure the osteoclastogenic cytokines released by Jurkat cells infected with these bacterial strains. The random sequence primer 15 and 16 could distinguish different AP-PCR profiles between clinical isolates of A. actinomycetemcomitans. A. actinomycetemcomitans significantly suppressed Jurkat cell viability in time dependent fashion and the results of DNA fragmentation assay indicated that this bacterial species induced apoptosis in Jurkat cells undergoing apoptosis released the osteoclastogenic cytokine, IL-1$\beta$, IL-6, TNF-$\alpha$. These data support the hypothesis that induction of apoptosis is at least one essential step in A. actinomycetemcomitans induced local immunosuppressive pathway, and that A. actinomycetemcomitans can modulate the immunomodulatory cell population in the periodontal tissue by inducing T cell death through apoptosis, and that apoptosis of local resident T cells may play an active role in bone resorption by releasing osteoclastogenic cytokines, e.g. IL-1$\beta$, IL-6, TNF-$\alpha$.

  • PDF

Protective Effects of Natural Phytochemicals on the Lipid Peroxides Induced Apoptosis in the Human Endothelial ECV 304 Cells

  • Kim, Ae-Jung;Kim, Mae-Wha;Kang, Young-Hee;Lee, Myoung-Sook
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.436-441
    • /
    • 2009
  • The final bio-metabolites of lipid peroxidation (LPO) such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) have been suggested to mediate the oxidative stress-linked pathological incidences. Natural phytochemicals such as polyphenolic compounds in green tea have been known in preventing the LPO induced cellular growth inhibition and apoptosis. We investigated that green tea ethanol extracts (GTE) inhibit LPO-induced apoptosis in ECV 304 cells. GTE had time- or dose-dependent anti-apoptotic effects as evidenced by changes in cell morphology, MTT assay, DNA fragmentation, LPO production, and the Western blotting for apoptotic expression. In the 4-HNE-induced apoptosis model, GTE $10-20{\mu}g/mL$ decreased cell death through decreasing LPO production. GTE protected 4-HNE induced apoptosis, as evidence with down regulation of mitochondrial signaling such as cytochrome C and caspase-3 activity. GTE increased bcl2, survival signaling protein, compared to 4-HNE alone within 6 hr incubation. Since polyphenols in GTE are effective antioxidants in endothelial ECV 304 cells, we suggested that natural polyphenols might be anti-atherosclerotic.

The Role of Autophagy in Apoptosis Induced by Water Extract of Platycodonis Radix in H460 Human Lung Cancer Cells (H460 인체 폐암세포에서 길경 물 추출물에 의해 유도된 세포사멸에서 자가포식의 역할)

  • Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives : Recent studies have suggested that Platycodonis Radix has various pharmacological effects such as anti-cancer, antioxidant, anti-asthma, anti-diabetes, anti-obesity, hepatoprotective, and cardiovascular protection effects. The aim of this study was to investigate the role of water extract of Platycodonis Radix (WPR)-induced autophagy in H460 human lung cancer cells. Methods : H460 cells were treated with WPR and cell viability was calculated by an MTT assay. To evaluate changes in apoptosis- and autophagy-related genes, Western blotting was performed. Two kinds of autophagy inhibitors, 3-Methyladenine (3-MA) and bafilomycin A1, were pretreated to confirm the role of WPR-induced autophagy. Results : WPR reduced the viability of H460 cells in a treatment concentration-dependent manner, which was associated with induction of apoptosis. It was also confirmed that WPR induced autophagy based on the formation of specific intracellular vacuoles and changes in the expression of autophagy-related genes. Interestingly, pretreatment with 3-MA and bafilomycin A1 increased WPR-induced cytotoxicity and apoptosis. Conclusions : WPR induced autophagy at low concentrations and early stages of treatment, but promoted apoptosis at high concentrations and late stages. Moreover, WPR-induced autophagy had a cytoprotective role in H460 cells.

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Apoptosis of Human Hepatocarcinoma (HepG2) and Neuroblastoma (SK-N-SH) Cells Induced by Polysaccharides-Peptide Complexes Produced by Submerged Mycelial Culture of an Entomopathogenic Fungus Cordyceps sphecocephala

  • Oh, Jung-Young;Baek, Yu-Mi;Kim, Sang-Woo;Hwang, Hye-Jin;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.512-519
    • /
    • 2008
  • Three different polysaccharide-peptide complexes (PPC, named as Fr-I, Fr-II, and Fr-III) were produced by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala, and their anticancer activities were investigated in human hepatocarcinoma (HepG2) and neuroblastoma (SK-N-SH) cells. The highest inhibitory effects of PPC on both HepG2 and SK-N-SH cells were achieved with Fr-I, whereas Fr-III with low molecular mass showed lower inhibition effects. Interestingly, the inhibitory effects of the three fractions were increased after protease digestion, suggesting that the inhibitory effects resulted mainly from the carbohydrate moiety, at least in the case of Fr-II and Fr-III, of PPC. The results of DNA fragmentation in PPC-induced apoptotic cells were confirmed by both DNA ladder assay and comet assay. Our investigation also showed that PPC-induced apoptosis of both cancer cells was associated with intracellular events including DNA fragmentation, activation of caspase-3, and modulation of Bcl-2 and Bax. We conclude that PPC has potential as a novel therapeutic agent for the treatment of both HepG2 and SK-N-SH cancer cells without any cytotoxicity against normal cells.

Essential Oil of Tridax procumbens L Induces Apoptosis and Suppresses Angiogenesis and Lung Metastasis of the B16F-10 Cell Line in C57BL/6 Mice

  • Manjamalai, A.;Kumar, M.J. Mahesh;Grace, V.M. Berlin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5887-5895
    • /
    • 2012
  • Background: To determine the effect of essential oil obtained from a traditionally used medicinal plant Tridax procumbens L, on lung metastasis developed by B16F-10 melanoma cells in C57BL/6 mice. Materials and Methods: Parameters studied were toxicity, lung tumor nodule count, histopathological features, tumor directed capillary vessel formation, apoptosis and expression levels of $P^{53}$ and caspase-3 proteins. Results: In vitro the MTT assay showed cytotoxicity was found to be high as 70.2% of cancer cell death within 24hrs for $50{\mu}g$. In vivo oil treatment significantly inhibited tumor nodule formation by 71.7% when compared with untreated mice. Formation of tumor directed new blood vessels was also found to be inhibited to about 39.5%. TUNEL assays also demonstrated a significant increase in the number of apoptotic positive cells after the treatment. $P^{53}$ and caspase-3 expression was also found to be greater in the essential oil treated group than the normal and cancer group. Conclusions: The present investigation showed significant effects of the essential oil of Tridax procumbens L in preventing lung metastasis by B16F-10 cell line in C57BL/6 mice. Its specific preventive effect on tumor directed angiogenesis and inducing effect on apoptosis warrant further studies at the molecular level to validate the significance of Tridax procumbens L for anticancer therapy.

$\beta$-Glucan enhanced apoptosis in human colon cancer cells SNU-C4

  • Kim, Mi-Ja;Hong, Se-Young;Kim, Sun-Kyu;Cheong, Chul;Park, Hong-Ju;Chun, Hye-Kyung;Jang, Ki-Hyo;Yoon, Byung-Dae;Kim, Chul-Ho;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.3 no.3
    • /
    • pp.180-184
    • /
    • 2009
  • The apoptotic effect of bacteria-derived $\beta$-glucan was investigated in human colon cancer cells SNU-C4 using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcription-polymerase chain reaction (RT-PCR) expressions of Bcl-2, Bax, and Caspase-3 genes, and assay of caspase-3 enzyme activity. $\beta$-Glucan of 10, 50, and $100{\mu}g$/mL decreased cell viability in a dose-dependent manner with typical apoptotic characteristics, such as morphological changes of chromatin condensation and apoptotic body formation from TUNEL assay. In addition, $\beta$-glucan ($100{\mu}g$/mL) decreased the expression of Bc1-2 by 0.6 times, whereas the expression of Bax and Caspase-3 were increased by 3.1 and 2.3 times, respectively, compared to untreated control group. Furthermore, the caspase-3 activity in the $\beta$-glucan-treated group was significantly increased compared to those in control group (P < 0.05). Bacterial derived $\beta$-glucan could be used as an effective compound inducing apoptosis in human colon cancer.

Protective Effect of Saururus chinensis Ethanol Extract against Styrene in Mouse Spermatocyte Cell Line (마우스 정모세포주에서 스티렌에 대한 삼백초 에탄올 추출물의 보호 효과)

  • Yoon, Ji Hye;Sohn, Sang Hyun;Lee, Eun Young;Kim, Geum Soog;Lee, Seung Eun;Lee, Dae Young;Seo, Kyung Hye;Lee, Sang Won;Kim, Hyung Don
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Background: This study was performed to evaluate the protective effect of Saururus chinensis ethanol extract (SCE) against styrene toxicity in mouse spermatocyte cells [GC-2spd (ts) cell line]. Methods and Results: Cytotoxicity in mouse spermatocyte cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Generation of reactive oxygen species (ROS) was determined using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to quantify the mRNA and protein expression levels, resepectiviely, of stress or apoptosis-related genes including p21, p53, heat shock protein 70 (Hsp70), heat shock protein 90 (Hsp90), Bax, Bcl-2, and caspase-3. The results of the MTT assay showed that $50 {\mu}g/m{\ell}$ SCE did not affect cell viability. ROS generation in mouse spermatocyte cells increased by treatment with $100{\mu}M$ styrene, and decreased by co-treatment with SCE. SCE repressed the mRNA expression of stress-related genes, which increased by styrene treatment. In addition, SCE inhibited the apoptosis of mouse spermatocyte cells by ameliorating mRNA and protein levels of apoptotic genes that were altered by styrene treatment. Conclusions: These results suggest that SCE may alleviate styrene toxicity in mouse spermatocyte cells by reducing ROS stress and regulating genes related to styrene toxicity.

Apoptotic Effect of Vitisin A from Vitis Amurensis against MES-SA Uterine Cancer Cells (왕머루 포도에서 분리한 Vitisin A의 자궁암주에 대한 자멸사 효과)

  • Lim, Jeong-Han;Lee, Hyo-Jeong;Lee, Eun-Ok;Lee, Hyo-Jung;Kwon, Hee-Young;Shim, Bum-Sang;Ahn, Kyoo-Seok;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.290-295
    • /
    • 2008
  • The cytotoxic characteristics of Vitsin A isolated from Vitis amurensis L. were examined in human colorectal, breast, uterine and renal cancer cells. Vitsin A showed good cytotoxicity against various cancer cells with $IC_{50}$ of $1\;{\sim}\;30\;{\mu}M$. Among them, Vitisin A exhibited strongest cytotoxic effect against MES-SA cells with $IC_{50}$ of 1.11 ${\mu}M$ by SRB assay. To verify whether the cytotoxicity of Vitisin A may be associated with apoptosis, TdT-mediated-dUTP Nick-End Labeling (TUNEL) assay and cell cycle analysis were performed in MES-SA cells. Apoptotic bodies were observed in Vitisin A treated MES-SA cells by TUNEL assay. Also, Vitisin A effectively increased the portion of $sub-G_1$ DNA content by flow cytometric analysis. Taken together, these findings suggest that the cytotoxicity of Vitisin A against MES-SA cells is chiefly mediated by apoptosis.