• Title/Summary/Keyword: Antiviral substance

Search Result 25, Processing Time 0.052 seconds

Antiviral effect of 18-mer-peptide (1b-4/21-C12) on Japanese encephalitis virus and Akabane virus

  • Yang, Dong-Kun;Park, Yu-Ri;Kwon, Young Do;Kim, Ha-Hyun;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.3
    • /
    • pp.19.1-19.6
    • /
    • 2022
  • Japanese encephalitis virus (JEV) and Akabane virus (AKAV) are mosquito-borne viruses that cause encephalitis and reproductive disorders in horses and cattle, respectively. There is no treatment for JEV or AKAV infections in animals. Therefore, we evaluated the antiviral activity of 18-mer amphipathic peptides in the 1b-4/21-C series on JEV and AKAV using Vero cells in vitro and evaluated their effects on JEV in mice. Of 6 peptides, 1b-4/21-C12 had the lowest IC50 of 0.313 against JEV and its use as an antiviral against JEV and AKAV was examined. The IC50 of 1b-4/21-C12 against JEV and AKAV was 0.78 and 1.14 µM, respectively. Mice treated with 5 or 2 mg/kg of 1b-4/21-C12 had 32% and 16% survival rates, respectively, and the surviving mice treated with 1b-4/21-C12 began to gain weight beginning 8 days post challenge with the virulent Nakayama strain. Moreover, 20 µM 1b-4/21-C peptide had no cytotoxic effects on Vero cells. Our in vitro and in vivo results indicate that 1b-4/21-C12 has antiviral activity against enveloped JEV and AKAV and might be useful as a therapeutic substance.

Anti-influenza Virus Activity of Water Soluble Substance from Elfvingia applanata Alone and in Combinations with Interferons (잔나비걸상버섯 수용성물질의 항인플루엔자바이러스 작용과 인터페론과의 병용효과)

  • 정선식;어성국;김영소;한성순
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.469-473
    • /
    • 1999
  • EA, the water soluble substance, was prepared from the carpophores of Elfvingia applanata (Pers). Karst. Anti-influenza A virus (anti-Flu A) activity of EA was examined of Vero cells by plaque reduction assay in vitro. And the combined antiviral effects fo EA with interferon (IFN) alpha and gamma were examined on the multiplication of Flu A with 50% effective concentration ($EC_50$) of 1.50 mg/ml. The results of combination assay were evaluated by the combination index (CI) that was analysed by the multiple drug effect analysis. The combination of EA with IFN alpha on Flu A showed more potent synergism with CI values of 0.50~0.52 of 50%, 70%, 90% effective levels than that with IFN gamma with CI values of 0.82~0.99.

  • PDF

Inhibitory Effects of Acinetobacter sp. KTB3 on Infection of Tobacco mosaic virus in Tobacco Plants

  • Kim, Young-Sook;Hwang, Eui-ll;O, Jeong-Hun;Kim, Kab-Sig;Ryu, Myong-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.293-296
    • /
    • 2004
  • During the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) infection on tobacco plants, we found a bacterial isolate KTB3, and identified it as Acinetobacter sp. which strongly inhibited the infection of TMV When the culture filtrate from KTB3 was applied on the upper surface of the Xanthi-nc tobacco leaves at the same time, or 24 hours before TMV inoculation, almost complete inhibition was achieved. Likewise, 86% inhibition was achieved, when the culture filtrate was applied on the underside of the leaves. In field trials, transmission of TMV from diseased seedlings to healthy ones during transplanting work was reduced by 92%, when the culture filtrate was sprayed onto the tobacco seedlings, cv. NC82, 24 hours before transplanting. No toxic effect was observed on the tobacco plants. Antiviral substance from the culture filtrate was purified by ethanol precipitation, dialysis, DEAE-cellulose, and Sephadex G75 gel column chromatography. The partially purified active material which showed positive color reaction to sugar and protein inhibited TMV infection by 60% at 1 ${\mu}$g/ml.

Antiviral Effects of the Culture Filtrate from Serratia marcescens Gsm01, against Cucumber mosaic virus (CMV)

  • Thapa, Shree Prasad;Lee, Hye-Jin;Park, Duck-Hwan;Kim, Sam-Kyu;Cho, Jun-Mo;Cho, Sae-Youll;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.369-375
    • /
    • 2009
  • The potential antiviral effects of the culture filtrates (CF) from Serratia marcescens strain Gsm01 against yellow strain of Cucumber mosaic virus (CMV-Y) were investigated. The culture filtrate of S. marcescens strain Gsm01 applied on Chenopodium amaranticolor showed high inhibitory activity, likewise no necrosis appeared when applied on the tobacco plants 2 days before CMV-Y inoculation. When plants were challenge inoculated with CMV-Y for eighteen days, the disease incidence in plants with culture filtrate of S. marcescens Gsm01 did not exceed 59%, whereas 100% of control plants were severely infected. The results of double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA), reverse transcriptase polymerase chain reaction (RT-PCR), dot blotting, and western blotting showed that culture filtrate treatment highly affected the accumulation of CMV-Y or its CP protein gene in the treated plant leaves. It was also observed that the culture filtrate had no RNase activity on genomic RNAs of CMV-Y, suggesting that culture filtrate may not contain ribosome inactivating proteins (RIPs) or proteins with RNase activity. These data shows that culture filtrate of S. marcescens strain Gsm01 seems to be a promising source of antiviral substance for the practical use.

Biolagical Activity on Extracts of Japanese Anise(Illicium Anisatum L.) Leaves and Twigs (붓순나무 잎과 가지의 추출물에 대한 생리활성 평가)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.311-316
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves and twigs were extracted with 50 % aqueous acetone three times. After filtration, the extracts were fractionated with n-hexane, chloroform, ethyl acetate and $H_2O$, and then freeze dried after condensation. Then antioxidation and antiviral activity were evaluated on each fractions. In the antioxidative activities, the results indicated high activity in the EtOAc soluble fraction of the leaves and the EtOAc and $H_2O$ soluble fractions of the twigs. It showed much higher antioxidative value compare to the controls, BHT and ${\alpha}$-tocopherol. In the antiviral activities, the all fractions were negative effects in HRV 1B and EV 71, but good in Influenza PR8. The activities of the crude extracts of the leaves and twigs showed more than 80% activity at the concentration of $10{\mu}g/mL$ and $50{\mu}g/mL$, respectively, and the activities of the EtOAc and $H_2O$ soluble fractions were close to 80%. Based on the above results, the extracts of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Anti-norovirus activity of natural compounds and its potential in food application (항노로바이러스 천연물을 이용한 식품개발)

  • Kim, Yeon-Ji;Lee, Jeong Su;Joo, In Sun;Lee, Sung-Joon
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • Control of food pathogens is critical in food safety field. Norovirus is one of the major causes of gastroenteritis and food poisoning worldwide, however, currently, there is not a vaccine or a specific drug available for its treatment. There are several methods to inactivate norovirus during food processing by chemical and physical treatments, however, the use of natural substance has been suggested as an optional strategy due to their safety and consumer preference. In this study supported by Ministry of Food and Drug Safety in Korea, we identified novel plant-derived substances with significant anti-norovirus activities. The aim of this project was to determine the antiviral activity of a wide range of natural substances, including plant-derived extracts and essential oils, using a norovirus surrogate system, human norovirus replicon-bearing cells, and mouse in vivo experiments. During the activity screening test, we identified novel anti-norovirus substances or oils using plaque assay with MNV-1. Six selected substances were formulated into an optimum mixture and used as an ingredient for salad sauce of which anti-novovirus activity was confirmed(pending for patent and paper submission). The potential application of selected natural substances as a metal surface sanitizer was also tested. Interestingly, the mixture of selected natural compounds showed a significant inhibitory effect against norovirus. These results suggest that these substances may be used as food ingredient with anti-norovirus antivity or components for surface sanitizers to prevent norovirus contamination.

Development and Research into Functional Foods from Hydrolyzed Whey Protein Powder with Sialic Acid as Its Index Component - I. Repeated 90-day Oral Administration Toxicity Test using Rats Administered Hydrolyzed Whey Protein Powder containing Normal Concentration of Sialic Acid (7%) with Enzyme Separation Method - (Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - I. 효소분리로 7% Siailc Acid가 표준적으로 함유된 유청가수분해단백분말(7%)의 랫드를 이용한 90일 반복경구투여 독성시험 평가 연구 -)

  • Noh, Hye-Ji;Cho, Hyang-Hyun;Kim, Hee-Kyong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.99-116
    • /
    • 2016
  • We herein performed animal safety assessment in accordance with Good Laboratory Practice (GLP) regulations with the aim of developing sialic acid from glycomacropeptide (hereafter referred to as "GMP") as an index ingredient and functional component in functional foods. GMP is a type of whey protein derived from milk and a safe food, with multiple functions, such as antiviral activity. A test substance was produced containing 7% (w/w) sialic acid and mostly-hydrolyzed whey protein (hereafter referred to as "7%-GNANA") by enzymatic treatment of substrate GMP. The maximum intake test dose level was selected based on 5,000 mg/kg/day dose set for male NOEL (no-observed-effect-level) and female NOAEL (no-observed-adverse-effect-level) determined by a dose-range finding (DRF) test (GLP Center of Catholic University of Daegu, Report No. 15-NREO-001) that was previously conducted with the same test substance. To evaluate the toxicity of a repeated oral dose of the test substance in connection with the previous DRF study, 1,250, 2,500, and 5,000 mg/kg of the substance were administered by a probe into the stomachs of 6-week-old SPF Sprague-Dawley male and female rats for 90 d. Each test group consisted of 10 male and 10 female rats. To determine the toxicity index, all parameters, such as observation of common signs; measurements of body weight and food consumption; ophthalmic examination; urinalysis, electrolyte, hematological, and serum biochemical examination; measurement of organ weights during autopsy; and visual and histopathological examinations were conducted according to GLP standards. After evaluating the results based on the test toxicity assessment criteria, it was determined that NOAEL of the test substance, 7%-GNANA, was 5,000 mg/kg/day, for both male and female rats. No animal death was noted in any of the test groups, including the control group, during the study period, and there was no significant difference associated with test substance, as compared with the control group, with respect to general symptoms, body weight changes, food consumption, ophthalmic examination, urinalysis, hematological and serum biochemical examination, and electrolyte and blood coagulation tests during the administration period (P<0.05). As assessed by the effects of the test substance on organ weights, food consumption, autopsy, and histopathological safety, change in kidney weight as an indicator of male NOAEL revealed up to 20% kidney weight increase in the high-dose group (5,000 mg/kg/day) compared with the change in the control group. However, it was concluded that this effect of the test substance was minor. In the case of female rats, reduction of food consumption, increase of kidney weight, and decrease of thymus weight were observed in the high-dose group. The kidney weight increased by 10.2% (left) and 8.9% (right) in the high-dose group, with a slight dose-dependency compared with that of the control group. It was observed that the thymus weight decreased by 25.3% in the high-dose group, but it was a minor test substance-associated effect. During the autopsy, botryoid tumor was detected on the ribs of one subject in the high-dose group, but we concluded that the tumor has been caused by a naturally occurring (non-test) substance. Histopathological examination revealed lesions on the kidney, liver, spleen, and other organs in the low-dose test group. Since these lesions were considered a separate phenomenon, or naturally occurring and associated with aging, it was checked whether any target organ showed clear symptoms caused by the test substance. In conclusion, different concentrations of the test substance were fed to rats and, consequently, it was verified that only a minor effect was associated with the test substance in the high-dose (5,000 mg/kg/day) group of both male and female rats, without any other significant effects associated with the test substance. Therefore, it was concluded that NOAEL of 7%-GNANA (product name: Helicobactrol) with male and female rats as test animals was 5,000 mg/kg/day, and it thus was determined that the substance is safe for the ultimate use as an ingredient of health functional foods.

Effect Inosiplex on Cellular and Humoral Immune Response (Inosiplex가 세포성(細胞性) 및 체액성면역반응(體液性免疫反應)에 미치는 영향(影響))

  • Ha, Tai-You;Lee, Hern-Ku
    • The Journal of the Korean Society for Microbiology
    • /
    • v.16 no.1
    • /
    • pp.57-64
    • /
    • 1981
  • The clinical need for agents to modify immune response in the treatment of viral infection has lead to an increased interest in cellular and biochemical mechanisms regulating the immune response and to the development of a variety of biological and chemical substance with immunomodulatory activity. Inosiplex has shown antiviral activity in tissue culture, animal models and huamn studies through augmentation of immune response. However, the effect of inosiplex on immune response in animal has not been extensively analyzed, and the effect of inosiplex on immune response has been paradoxical depending on the time of administration of inosiplex in relation to that of antigen. Therefore, this study was undertaken to assess the effect of inosiplex on the immune response to sheep red blood cells(SRBC) in normal and viral infected mice. Inosiplex increased cellular immune response and plaque forming lymphocyte response to SRBC, decreased the recovery of S. typhimurium from infected mice spleen, and restored the depressed cellular immune response by measle and newcastle disease virus infections. All of the above results were observed only when inosiplex was given after immunization but did not when given before immunization. These results indicate that inosiplex stimulate the efferent are of immune response and may even block the afferent are, and suggest that inosiplex is a very promising drug in therapy of many viral infections.

  • PDF

IL -12 Expression by Cefodizime As an Immuno-modulator

  • Joo, Seong-Soo;Kwon, Hee-Seung;Oh, Won-Sik;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.306.1-306.1
    • /
    • 2002
  • Cefodizime has originally been developed for treating infections as antibiotics. However. according to some of recent studies. cefodizime. a third generation cephalosporin. may potentially have the capability of stimulating chemotactic activity of neutrophils and monocytes as well as the strong immuno-modulator. In this study. we studied to learn about the expressive effect of dentritic cells and macrophage. With this background. We have studied to see if cefodizime can be a potential substance inducing an immunological function in dendritic cells and peritoneal macrophages. IL-12 activates NK cell and macrophage, and shows antiviral effect by excreting INF-${\gamma}$. In vitro. total RNAs were extracted from murine dentritic cell at 4, 8, 12, 24hr after the application of 10, 50, 100${\gamma}g$/ml of cefodizime wighout other stimulators. And we analyzed IL-12 mRNA using RT-PCR method. In conclusion. IL-12 mRNA was increased. and the results suggest that cefodizime activate TH1 cell induction, CTL differentiation as well as accelerating the increase of NK. LAK cell.

  • PDF