• Title/Summary/Keyword: Antiviral drugs

Search Result 86, Processing Time 0.031 seconds

Analysis of Drug Utilization in Patients with Chronic Hepatitis B (국내 만성 B형 간염 환자의 경구용 항바이러스제 사용 현황 분석)

  • Lee, Yu Jeong;Bae, Sung Jin;Je, Nam Kyung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.3
    • /
    • pp.220-229
    • /
    • 2016
  • Background: The treatment goal for patients with chronic hepatitis B infection is to prevent progression of the disease to cirrhosis and hepatocellular carcinoma. Current therapies include standard and pegylated interferon-alfa and nucleoside/nucleotide analogues: lamivudine, adefovir, entecavir, telbivudine, clevudine, and tenofovir. This study aims to analyze changes in the prescribing patterns of chronic hepatitis B (CHB) medications in South Korea between 2013 and 2014. Methods: A cross-sectional study was conducted using National Patients Sample data compiled by the Health Insurance Review and Assessment Service from 2013 and 2014. Patients with CHB were identified with Korean Standard Classification of Diseases code-6 (B18.0 and B18.1) and those who were maintaining active prescriptions with CHB medications covering the index date (December $1^{st}$, each year) were included. The utilization of antiviral therapy was investigated during 2013 and 2014. Results: A total of 4,204 and 4,552 patients in 2013 and 2014 respectively, were included in the analysis. The proportion of male patients was two of third and the patients 41-60 years old accounted for 60% of all analyzed patients. The most utilized drug was entecavir (55.1% in 2013 and 44.8% in 2014) and the second most utilized drug was tenofovir in both years (18.8% in 2013 and 29.0% in 2014). The percentage of combination therapy was 13.6% and 13.1% in 2013 and 2014, respectively. The proportion of tenofovir prescriptions was increased in 2014 compared with 2013. Conclusion: With the development of new drugs and the changes in clinical practice guidelines, the prescription pattern of the antiviral agents for patients with CHB has changed. The rate of utilization of tenofovir has increased.

A study on the degree of need of the knowledge of pathophysiology, clinical microbiology and mechanisms and effects of drugs in clinical nurses (기초간호자연과학의 병태생리학, 병원미생물, 약물의 기전과 효과 내용별 필요도에 대한 연구)

  • Choe, Myoung-Ae;Byun, Young-Soon;Seo, Young-Sook;Hwang, Ae-Ran;Kim, Hee-Seung;Hong, Hae-Sook;Park, Mi-Jung;Choi, S-Mi;Lee, Kyung-Sook;Seo, Wha-Sook;Shin, Gi-Soo
    • Journal of Korean Biological Nursing Science
    • /
    • v.2 no.1
    • /
    • pp.1-19
    • /
    • 2000
  • The purpose of this study was to define the content of the requisite knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs needed for clinical knowledge for nursing practice. Contents of knowlege on pathological physiology, clinical microbiology, and mechanisms and effects of drugs were constructed from syllabus of basic nursing subjects in 4 colleges of nursing, and textbooks. The degree of need of 72 items was measured with a 4 point scale. The subjects of this study were college-graduated 136 nurses from seven university hospital in Seoul and three in Chonnam Province, Kyungbook Province, and Inchon. They have been working at internal medicine ward, surgical ward, intensive care unit, obstetrics and gynecology ward, pediatrics ward, opthalmology ward, ear, nose, and throat ward, emergency room, rehabilitation ward, cancer ward, and hospice ward. The results were as follows : 1. The highest scored items of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice were side effects of drugs, anticoagulants, mechanisms of drugs, antihypertensive drugs, tolerance and addiction of drugs, interactions among drugs, hospital infection in the order of importance. The lowest scored item was structure of microorganisms. 2. The highest order of need according to unit was repair in tissue injury unit, definition etiology classification of inflammation in inflammation unit, transplantation and immunologic response in alterations in immunity unit, thrombus and thrombosis in disorders of cardiovascular function unit, gene disorders in genetic disorders unit, hospital infection in infection unit, virus in microorganisms unit, side reactions of drugs in introduction unit, anticonvulsants in drugs for central nervous system unit, local anesthesia in anesthesia unit, anticoagulants in drugs for cardiovascular system unit, anti-inflammatory drugs in antibiotics unit, anti-ulcer drugs in drugs for digestive system unit, and bronchodilators in drugs for respiratory system unit. 3. The common content of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs needed for all clinical areas in nursing were side effects of drugs, anticoagulants, interactions among drugs, and hospital infection. However, the degree of need of each pathological physiology, clinical microbiology, clinical microbiology, and mechanisms and effects of drugs was different depending on clinical areas. 4. Significant differences in the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice such as tissue changes due to injurious stimuli, degenerative changes of tissue, alterations in metabolism of carbohydrates, ischemia, hyperemia and congestion, hospital infection, structure of microorganism, classification of microorganism, bacteria, virus, antidepressants, antipsychotic drugs, antiemetic drugs, antiparkinsonism drugs, antianxiety drugs, antibiotics, tuberculostatics, antiviral drugs, antifungal drugs, parasiticides, antiulcer drugs, antidiarrheais, and anti constipation drugs were shown according to the work area. 5. Significant differences in the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice such as transplantation and immunologic response, alterations in the metabolism of uric acid, structure of microorganism, classification of microorganism, immunosuppressants, drugs for congestive heart failure were demonstrated according to the duration of work. Based on these findings, all the 72 items constructed by Korean Academic Society of Basic Nursing science should be included as contents of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs.

  • PDF

A Comprehensive Study of SARS-CoV-2: From 2019-nCoV to COVID-19 Outbreak

  • Waris, Abdul;Ali, Muhammad;Khan, Atta Ullah;Ali, Asmat;Baset, Abdul
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.252-266
    • /
    • 2020
  • The coronavirus disease 2019 (COVID-19) is a highly contagious pneumonia that has spread throughout the world. It is caused by a novel, single stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genetic analysis revealed that, phylogenetically, the SARS-CoV-2 is related to severe acute respiratory syndrome-like viruses seen in bats. Because of this, bats are considered as a possible primary reservoir. The World Health Organization has declared the COVID-19 outbreak as a pandemic. As of May 27, 2020, more than 5,406,282 confirmed cases, and 343,562 confirmed deaths have been reported worldwide. Currently, there are no approved vaccines or antiviral drugs available against COVID-19. Newly developed vaccines are in the first stage of clinical trials, and it may take a few months to a few years for their commercialization. At present, remdesivir and chloroquine are the promising drugs for treating COVID-19 patients. In this review, we summarize the diversity, genetic variations, primary reservoirs, epidemiology, clinical manifestations, pathogenesis, diagnosis, treatment strategies, and future prospects with respect to controlling the spread of COVID-19.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

In Vitro Screening for Compounds Derived from Traditional Chinese Medicines with Antiviral Activities Against Porcine Reproductive and Respiratory Syndrome Virus

  • Cheng, Jia;Sun, Na;Zhao, Xin;Niu, Li;Song, Meiqin;Sun, Yaogui;Jiang, Junbing;Guo, Jianhua;Bai, Yuansheng;He, Junping;Li, Hongquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1076-1083
    • /
    • 2013
  • Seventeen compounds derived from traditional Chinese medicines (TCMs) were tested for their antiviral activity against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Visualization with the cytopathologic effect (CPE) assay and the 3-(4, 5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide test were used to determine the 50% cytotoxic concentration ($CC_{50}$) and 50% effective concentration ($EC_{50}$) in cultured Marc-145 cells. Among the tested compounds, chlorogenic acid and scutellarin showed potential anti-PRRSV activity. The $EC_{50}$ values were $270.8{\pm}14.6{\mu}g/ml$ and $28.21{\pm}26.0{\mu}g/ml$ and the selectivity indexes were >5.54 and 35.5, respectively. The time-of-addition and virucidal assay indicated that the anti-PRRSV activity of the two compounds could be due to their inhibiting the early stage of virus replication and/or inactivating the virus directly. The inhibition of the virus attachment was not observed in the adsorption inhibition assay. The inhibition ratios of chlorogenic acid and scutellarin were, respectively, 90.8% and 61.1% at the maximum non-cytotoxic concentrations. The results have provided a basis for further exploration of their antiviral properties and mechanisms in vivo. We believe that the chlorogenic acid and scutellarin have a great potential to be developed as new anti-PRRSV drugs for clinical application.

Chemical Modification of Rupestonic Acid and Preliminarily In Vitro Antiviral Activity Against Influenza A3 and B Viruses

  • Yong, Jian-Ping;Aisa, Haji Akber
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1293-1297
    • /
    • 2011
  • To improve the biological activities of rupestonic acid, 21 new rupestonic acid fatty ester derivatives (2a-2h) and aromatic ester derivatives (2i-2u) were synthesized and preliminarily evaluated for their anti-influenza activity in vitro by the national center for drug screening of China, using the Oseltamivir and Ribavirin as reference drugs. The results showed that 2l ($IC_{50}=0.5{\mu}mol/L$) exhibited potent anti-influenza $A_3$ viral activity among the synthesized compounds and was 10-fold more potent than that of the reference drug Oseltamivir ($IC_{50}=5.1{\mu}mol/L$).

Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu

  • Yoo, Eunsun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 2014
  • The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(${\alpha}2-3$) or sialyl(${\alpha}2-6$) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classification based on the linkage type does not correlate with human infection and human-to-human transmission of these viruses. It is newly suggested that flu infection and transmission to humans require high affinity binding to the extended conformation with long length sialyl(${\alpha}2-6$)galactose containing oligosaccharides. On the other hand, the avian flu virus requires folded conformation with sialyl(${\alpha}2-3$) or short length sialyl(${\alpha}2-6$) containing trisaccharides. This suggests a potential future direction for the development of new species-specific antiviral drugs to prevent and treat pandemic flu.

Photocleavage of DNA by 4′-Bromoacetophenone- Pyrrole Carboxamides

  • Jeon, Raok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.79-79
    • /
    • 2001
  • Genotoxic chemotherapeutics are irreversible DNA targeting agents, which can act as anticancer and antiviral drugs. Natural antibacterial and anticancer enediynes function through the formation of free radicals formed by Bergman-type cycloaromatization and being capable of cleavage of DNA strand. They have been focused primarily on the design and syntheses of simple enediyne structures, which can be mimic their mechanistic feature. Recently. I have been reported the possible application of 4'-bromoacetophenone as a simple photoactivatable DNA cleaving agent, which could be readily prepared and exhibit potent and selective DNA cleaving activity. Herein, we further investigated the activity of 4'-bromoacetophenone-pyrrolecarboxamides, which consist of both DNA cleaving element and recognition unit under various conditions in order to get more understanding of the mechanism of the action and find a broad spectrum of application.

  • PDF

Inhibitory Effects of Terminalia chebula, Sanguisorba officinalis, Rubus coreanus and Rheum palmatum on Hepatitis B Virus Replication in HepG2 2.2.15 Cells (HepG2 2.2.15 세포주를 이용한 가자, 지유, 복분자, 대황의 B형 간염바이러스 증식 억제 효과)

  • 김태균;박민수;한형미;강석연;정기경;류항묵;김승희
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.458-463
    • /
    • 1999
  • This study was undertaken to test for antiviral activity of the aqueous extracts prepared from 4 medicinal plants of Korea (Terminalia chebula, Sanguisorba officinalia, Rubus coreanus, Rheum palmatum). Aqueous extracts were assayed for the inhibition of hepatitis B virus (HBV) replication by measurement of HBV DNA and surface antigen (HBsAg) levels in the extracellular medium of HepG2 2.2.15 cells. All extracts decreased the levels of extracellular HBV virion DNA at concentrations ranging from 64 to $128{\;}\mu\textrm{g}/ml$ and inhibited the production of HBsAg dose-dependently. Among the 4 tested plants, Terminalia chebula exhibits the most prominent anti-HBV activities. Our findings suggest that these 4 medicinal plants may have potential to develop as specific anti-HBV drugs in the future.

  • PDF

Current scenario and future applicability of antivirals against herpes zoster

  • Sang Hun Kim
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.4-10
    • /
    • 2023
  • Herpes zoster (HZ) is a common disease in the aging population and immunocompromised individuals, with a lifetime risk of 20%-30% that increases with age. HZ is caused by reactivation of the varicella-zoster virus (VZV), which remains latent in the spinal dorsal root ganglia and cranial sensory ganglia after resolution of the primary VZV infection. The main focus of HZ management is rapid recovery from VZV infection as well as the reduction and prevention of zoster-associated pain (ZAP) and postherpetic neuralgia (PHN). The use of antivirals against VZV is essential in the treatment of HZ. However, limited antivirals are only licensed clinically for the treatment of HZ, including acyclovir, valacyclovir, famciclovir, brivudine, and amenamevir. Fortunately, some new antivirals against different types of Herpesviridae have been investigated and suggested as novel drugs against VZV. Therefore, this review focuses on discussing the difference in efficacy and safety in the currently licensed antivirals for the treatment of HZ, the applicability of future novel antivirals against VZV, and the preventive or therapeutic effects of these antivirals on ZAP or PHN.