Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.005

Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu  

Yoo, Eunsun (College of Health Science, Honam University)
Publication Information
Biomolecules & Therapeutics / v.22, no.2, 2014 , pp. 93-99 More about this Journal
Abstract
The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(${\alpha}2-3$) or sialyl(${\alpha}2-6$) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classification based on the linkage type does not correlate with human infection and human-to-human transmission of these viruses. It is newly suggested that flu infection and transmission to humans require high affinity binding to the extended conformation with long length sialyl(${\alpha}2-6$)galactose containing oligosaccharides. On the other hand, the avian flu virus requires folded conformation with sialyl(${\alpha}2-3$) or short length sialyl(${\alpha}2-6$) containing trisaccharides. This suggests a potential future direction for the development of new species-specific antiviral drugs to prevent and treat pandemic flu.
Keywords
Conformation; Linkage type; Oligosaccharide; H1N1; H5N1; Tamiflu;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stoner, T. D., Krauss, S., DuBois, R. M., Negovetich, N. J., Stallknecht, D. E., Senne, D. A., Gramer, M. R., Swafford, S., DeLiberto, T., Govorkova, E. A. and Webster, R. G. (2010) Antiviral susceptibility of avian and swine influenza virus of the N1 neuraminidase subtype. J. Virol. 84, 9800-9809.   DOI
2 Taylo, M. E. and Drickame, K. (2011) Viruses use lectins to target cell surfaces, Introduction to Glycobiology, Oxford University Press, London.
3 Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P. and Garcia-Sastre, A. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77-80.   DOI   ScienceOn
4 Varghese, J. N., Laver, W. G. and Colman, P. M. (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303, 35-40.   DOI   ScienceOn
5 Vavricka, C. J., Li, Q., Wu, Y., Qi, J., Wang, M., Liu, Y., Gao, F., Liu, J., Feng, E., He, J., Wang, J., Liu, H., Jiang, H. and Gao, G. F. (2011) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog. 7, e1002249.   DOI
6 Viswanathan, K., Chandrasekaran, A., Srinivasan, A., Raman, R., Sasisekharan, V. and Sasisekharan, R. (2010) Glycans as receptors for influenza pathogenesis. Glycoconj. J. 27, 561-570.   DOI
7 Walther, T., Karamanska, R., Chan, R. W., Chan, M. C., Jia, N., Air, G., Hopton, C., Wong, M. P., Dell, A., Malik Peiris, J. S., Haslam, S. M. and Nicholls, J. M. (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog. 9, e1003223.   DOI
8 Stevens, J., Blixt, O., Paulson, J. C. and Wilson, I. A. (2006a) Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol. 4, 857-864.   DOI
9 Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C. and Wilson, I. A. (2006b) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410.   DOI
10 Wang, N. X. and Zheng, J. J. (2009) Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci. 18, 707-715.
11 Paulson, J. C., Blixt, O. and Collins, B. E. (2006) Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238-248.   DOI
12 Perrone, L. A. and Tumpey, T. M. (2007) Reconstruction of the 1918 pandemic influenza virus: how revealing the molecular secrets of the virus responsible for the worst pandemic in recorded history can guide our response to future influenza pandemics. Infect. Disord. Drug Targets 7, 294-303.   DOI
13 Raman, R. and Sasisekharan, R. (2007) Cooperativity in glycan-protein interactions. Chem. Biol. 14, 873-874.   DOI
14 Rumschlag-Booms, E. and Rong, L. (2013) Influenza a virus entry: implications in virulence and future therapeutics. Adv. Virol. 2013, 121924.
15 Russel, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J. and Skehe, J. J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45-49.   DOI   ScienceOn
16 Samson, M., Pizzorno, A., Abed, Y. and Boivin, G. (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res. 98, 174-185.   DOI   ScienceOn
17 Kumari, K., Gulati, S., Smith, D. F., Gulati, U., Cummings, R. D. and Air, G. M. (2007) Receptor binding specificity of recent human H3N2 influenza viruses. Virol. J. 4, 42.   DOI
18 Sorrell, E. M., Schrauwen, E. J., Linster, M., De Graaf, M., Herfst, S. and Fouchier, R. A. (2011) Predicting 'airborne' influenza viruses: (trans-) mission impossible? Curr. Opin. Virol. 1, 635-642.   DOI
19 Srinivasan, A., Viswanathan, K., Raman, R., Chandrasekaran, A., Raguram, S., Tumpey, T. M., Sasisekharan, V. and Sasisekharan, R. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 105, 2800-2805.   DOI
20 Stevens, J., Blixt, O., Chen, L. M., Donis, R. O., Paulson, J. C. and Wilson, I. A. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J. Mol. Biol. 381, 1382-1394.   DOI
21 Laver, G. (2006) Antiviral drugs for influenza: Tamiflu past, present and future. Future Virol. 1, 577-586.   DOI   ScienceOn
22 Layne, S. P., Monto, A. S. and Taubenberger, J. K. (2009) Pandemic influenza: an inconvenient mutation. Science 323, 1560-1561.   DOI
23 Lee, S. M. and Yen, H. L. (2012) Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res. 96, 391-404.   DOI
24 Mair, C. M., Ludwig, K., Herrmann, A. and Sieben, C. (2014) Receptor binding and pH stability - How influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta 1838, 1153-1168.   DOI
25 Matrosovich, M., Herrler, G. and Klenk, H. D. (2013) Sialic acid receptors of viruses. Top. Curr. Chem. 128, 466.
26 Nguyen, D. C., Uyeki, T. M., Jadhao, S., Maines, T., Shaw, M., Matsuoka, Y., Smith, C., Rowe, T., Lu, X., Hall, H., Xu, X., Balish, A., Klimov, A., Tumpey, T. M., Swayne, D. E., Huynh, L. P., Nghiem, H. K., Nguyen, H. H., Hoang, L. T., Cox, N. J. and Katz, J. M. (2005) Isolation and characterization of avian influenza viruses, including highly pathogenic H5N1, from poultry in live bird markets in Hanoi, Vietnam, in 2001. J. Virol. 79, 4201-4212.   DOI   ScienceOn
27 Memoli, M. J., Hrabal, R. J., Hassantoufighi, A., Eichelberger, M. C. and Taubenberger, J. K. (2010) Rapid selection of oseltamivir- and peramivir-resistant pandemic H1N1 virus during therapy in 2 immunocompromised hosts. Clin. Infect. Dis. 50, 1252-1255.   DOI   ScienceOn
28 Neumann, G. and Kawaoka, Y. (2006) Host range restriction and pathogenicity in the context of influenza pandemic. Emerg. Infect. Dis. 12, 881-886.   DOI
29 Neumann, G., Noda, T. and Kawaoka, Y. (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939.   DOI   ScienceOn
30 Nicholls, J. M., Bourne, A. J., Chen, H., Guan, Y. and Peiris, J. S. (2007) Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir. Res. 8, 73.   DOI
31 Gambaryan, A., Yamnikova, S., Lvov, D., Tuzikov, A., Chinarev, A., Pazynina, G., Webster, R., Matrosovich, M. and Bovin, N. (2005) Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334, 276-283.   DOI   ScienceOn
32 Ha, Y., Stevens, D. J., Skehel, J. J. and Wiley, D. C. (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. U.S.A. 98, 11181-11186.   DOI   ScienceOn
33 Hayden, F. (2009) Developing new antiviral agents for influenza treatment: what does the future hold? Clin. Infect. Dis. 48 Suppl 1, S3-13.   DOI
34 Ha, Y., Stevens, D. J., Skehel, J. J. and Wiley, D. C. (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309, 209-218.   DOI
35 Haselhorst, T., Garcia, J. M., Islam, T., Lai, J. C., Rose, F. J., Nicholls, J. M., Peiris, J. S. and von Itzstein, M. (2008) Avian influenza H5-containing virus-like particles (VLPs): host-cell receptor specificity by STD NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 47, 1910-1912.   DOI
36 Hatta, M., Gao, P., Halfmann, P. and Kawaoka, Y. (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842.   DOI
37 Hayden, F. G. and Pavia, A. T. (2006) Antiviral management of seasonal and pandemic influenza. J. Infect. Dis. 194 Suppl 2, S119-126.   DOI
38 Hvistendahl, M., Normile, D. and Cohen, J. (2013) Influenza. Despite large research effort, H7N9 continues to baffle. Science 340, 414-415.   DOI
39 Imai, M. and Kawaoka, Y. (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160-167.   DOI
40 Ison, M. G. (2011) Antivirals and resistance: influenza virus. Curr. Opin. Virol. 1, 563-573   DOI   ScienceOn
41 Jimenez-Alberto, A., Alvarado-Facundo, E., Ribas-Aparicio, R. M. and Castelan-Vega, J. A. (2013) Analysis of adaptation mutants in the hemagglutinin of the influenza A(H1N1)pdm09 virus. PloS One 8, e70005.   DOI
42 Claas, E. C., Osterhaus, A. D., van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. and Webster, R. G. (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472-477.   DOI   ScienceOn
43 Baz, M., Abed, Y., Papenburg, J., Bouhy, X., Hamelin, M. E. and Boivin, G. (2009) Emergence of oseltamivir-resistant pandemic H1N1 virus during prophylaxis. N. Engl. J. Med. 361, 2296-2297.   DOI
44 Bateman, A. C., Karamanska, R., Busch, M. G., Dell, A., Olsen, C. W. and Haslam, S. M. (2010) Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of $NeuAc{\alpha}2-6$ glycans. J. Biol. Chem. 285, 34016-34026.   DOI
45 Belshe, R. B. (2005) The origins of pandemic influenza--lessons from the 1918 virus. N. Engl. J. Med. 353, 2209-2211.   DOI
46 Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T. M., Sasisekharan, V. and Sasisekharan, R. (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 26, 107-113.   DOI
47 Chen, L. M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., Cox, N. J., Paulson, J. C. and Donis, R. O. (2012) In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology 422, 105-113.   DOI
48 Cohen, J. (2013) Influenza. New flu virus in China worries and confuses. Science 340, 129-130.   DOI
49 Clercq, E.D. (2013) Antivirals: Past, present and future. Biochem. Pharmacol. 85, 727-744.   DOI   ScienceOn
50 Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., Skehel, J. J., Martin, S. R., Hay, A. J. and Gamblin, S. J. (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453, 1258-1261.   DOI   ScienceOn
51 Colman, P. M., Varghese, J. N. and Laver, W. G. (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41-44.   DOI   ScienceOn
52 Bantia, S., Parker, C. D., Ananth, S. L., Horn, L. L., Andries, K., Chand, P., Kotian, P. L., Dehghani, A., El-Kattan, Y., Lin, T., Hutchison, T. L., Montgomery, J. A., Kellog, D. L. and Babu, Y. S. (2001) Comparison of the anti-influenza virus activity of RWJ-270201 with those of oseltamivir and zanamivir. Antimicrob. Agents Chemother. 45, 1162-1167.   DOI
53 Yoo, E. (2001) A conformational study of oligosaccharides investigated by tandem mass spectrometry and molecular modeling. Bull. Korean Chem. Soc. 22, 293-297.   과학기술학회마을
54 Watanabe, Y., Ibrahim, M. S., Suzuki, Y. and Ikuta, K. (2012) The changing nature of avian influenza A virus (H5N1). Trends Microbiol. 20, 11-20.   DOI
55 Xu, D., Newhouse, E. I., Amaro, R. E., Pao, H. C., Cheng, L. S., Markwick, P. R., McCammon, J. A., Li, W. W. and Arzberger, P. W. (2009) Distinct glycan topology for avian and human sialopentasaccharide receptor analogues upon binding different hemagglutinins: a molecular dynamics perspective. J. Mol. Biol. 387, 465-491.   DOI
56 Xu, X., Zhu, X., Dwek, R. A., Stevens, J. and Wilson, I. A. (2008) Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J. Virol. 82, 10493-10501.   DOI   ScienceOn
57 Yamada, S., Shinya, K., Takada, A., Ito, T., Suzuki, T., Suzuki, Y., Le, Q. M., Ebina, M., Kasai, N., Kida, H., Horimoto, T., Rivailler, P., Chen, L. M., Donis, R. O. and Kawaoka, Y. (2012) Adaptation of a duck influenza A virus in quail. J. Virol. 86, 1411-1420.   DOI
58 Yen, H. L., Lipatov, A. S., Ilyushina, N. A., Govorkova, E. A., Franks, J., Yilmaz, N., Douglas, A., Hay, A., Krauss, S., Rehg, J. E., Hoffmann, E. and Webster, R. G. (2007) Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J. Virol. 81, 6890-6898.   DOI
59 Yoo, E. (2011) Study of specific oligosaccharide structures related with swine flu (H1N1) and avian flu, and tamiflu as their remedy. J. Microbiol. Biotechnol. 21, 449-454.   과학기술학회마을   DOI
60 Yoo, E. and Yoon, I. (2008) Molecular simulations and conformational studies of fucose((${\alpha}1-3)Gal({\beta}1-X$)GlcNAc where X=3,4, or 6 oligosaccharides. Bull. Korean Chem. Soc. 29, 1755-1760.   과학기술학회마을   DOI
61 Zurcher, T., Yates, P. J., Daly, J., Sahasrabudhe, A., Walters, M., Dash, L., Tisdale, M. and McKimm-Breschkin, J. L. (2006) Mutations conferring zanamivir resistance in human influenza virus N2 neuraminidases compromise virus fitness and are not stably maintained in vitro. J. Antimicrob. Chemother. 58, 723-732.   DOI
62 Stevens, J., Corper, A. L., Basler, C. F., Taubenberger, J. K., Palese, P. and Wilson, I. A. (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866-1870.   DOI   ScienceOn
63 Pappas, C., Viswanathan, K., Chandrasekaran, A., Raman, R., Katz, J. M., Sasisekharan, R. and Tumpey, T. M. (2010) Receptor specificity and transmission of H2N2 subtype viruses isolated from the pandemic of 1957. PloS One 5, e11158.   DOI
64 Xu, R., McBride, R., Nycholat, C. M., Paulson, J. C. and Wilson, I. A. (2012) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J. Virol. 86, 982-990.   DOI
65 Puzelli, S., Facchini, M., Di Martino, A., Fabiani, C., Lackenby, A., Zambon, M. and Donatelli, I. (2011) Evaluation of the antiviral drug susceptibility of influenza viruses in Italy from 2004/05 to 2009/10 epidemics and from the recent 2009 pandemic. Antiviral Res. 90, 205-212.   DOI
66 Shriver, Z., Raman, R., Viswanathan, K. and Sasisekharan, R. (2009) Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions. Chem. Biol. 16, 803-814.   DOI
67 Gubareva, L. V., Kaiser, L. and Hayden, F. G. (2000) Influenza virus neuraminidase inhibitors. Lancet 355, 827-835.   DOI   ScienceOn
68 Babu, Y. S., Chand, P., Bantia, S., Kotian, P., Dehghani, A., El-Kattan, Y., Lin, T. H., Hutchison, T. L., Elliott, A. J., Parker, C. D., Ananth, S. L., Horn, L. L., Laver, G. W. and Montgomery, J. A. (2000) BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43, 3482-3486.   DOI   ScienceOn
69 Belser, J. A., Blixt, O., Chen, L. M., Pappas, C., Maines, T. R., Van Hoeven, N., Donis, R., Busch, J., McBride, R., Paulson, J. C., Katz, J. M. and Tumpey, T. M. (2008) Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc. Natl. Acad. Sci. U.S.A. 105, 7558-7563.   DOI