• 제목/요약/키워드: Antisymmetric Laminates

검색결과 14건 처리시간 0.022초

균일분포 온도하의 두꺼운 복합 재료 적층판의 열적 좌굴 해석 (Thermal Buckling of Thick Laminated Composite Plates under Uniform Temperature Distribution)

  • 이영신;이열화;양명석;박복선;이종수
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1686-1699
    • /
    • 1993
  • In this paper, the thermal buckling of thick composite angle-ply laminates subject to uniform temperature distribution is studied. For the plates of 4-edges simply supported condition and those of 4-edges clamped condition, the critical buckling temperatue is derived, using tile finite element method based on the shear deformation theory. The effects of lamination angle, layer number, laminate thickness, plate aspect ratio and boundary constraints upon the critical buckling temperature are presented.

유사 변환을 이용한 역대칭 앵글 플라이 적층 후판의 거동 (Behaviors of Thick Antisymmetric Angle-Ply Laminate Using the Affine Transformation)

  • 이영신;양명석;나문수
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.28-40
    • /
    • 1991
  • 본 연구에서는 4변이 단순 지지된 두꺼운 역대칭 앵글 플라이 적층판의 굽힘, 좌굴 및 진동 거동을 규명하였으며, 인장과 굽힘, 비틀림 사이의 결합 특성을 고려하 였고, 전단 변형을 고려하였다.또 유사 변환 개념을 도입하여 복합 재료 적층판의 거동을 일반화 하였다.

Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory

  • Abualnour, Moussa;Chikh, Abdelbaki;Hebali, Habib;Kaci, Abdelhakim;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.489-498
    • /
    • 2019
  • The thermo-mechanical bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which introduces undetermined integral terms and needs only four variables. The validity of the present model is proved by comparison with solutions available in the literature.

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory

  • Benselama, Khadidja;El Meiche, Noureddine;Bedia, El Abbas Adda;Tounsi, Abdelwahed
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.47-64
    • /
    • 2015
  • This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

원통형 굽힘을 받는 적층판의 임계좌굴 하중 (Critical Buckling Loads of Laminated Composites under Cylindrical Bending)

  • 이수용
    • 항공우주시스템공학회지
    • /
    • 제1권4호
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계 (Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load)

  • 이영신;이열화;양명석;박복선
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도 (Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation)

  • 한성천;윤석호;장석윤
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.201-209
    • /
    • 1998
  • 강섬유보강 적층복합구조물에서 온도의 변화는 구조물의 응답에 중요한 영향을 미칠수 있다. 온도의 급작스런 변화는 재료의 강도와 성질을 현저히 저하시켜 구조물의 대변형, 좌굴, 고응력상태를 유발하는 중요한 인자가 된다. 본 연구에서는 등분포로 재하된 온도하중에 의한 적층복합판의 온도좌굴에 관한 해석을 수행하였다. 전단변형의 효과를 정확히 고려하기위해 5개의 변수로 구성된 고차전단변형이론을 적용하였다. 적층판의 배열각도, 적층판의 수, 폭-두께비의 변화, 형상비의 변화에 따른 임계좌굴온도를 구하여 1차전단변형이론에 의한 결과와 고전적이론에 의한 결과와 비교분석하였다.

  • PDF

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

A novel first-order shear deformation theory for laminated composite plates

  • Sadoune, Mohamed;Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.321-338
    • /
    • 2014
  • In the present study, a new simple first-order shear deformation theory is presented for laminated composite plates. Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher-order shear deformation theories. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported antisymmetric cross-ply and angle-ply laminates are obtained and the results are compared with the exact three-dimensional (3D) solutions and those predicted by existing theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of laminated composite plates.