• Title/Summary/Keyword: Antiproliferative

Search Result 338, Processing Time 0.028 seconds

Antiproliferative Evaluation and Apoptosis Induction in MCF-7 Cells by Ziziphus spina christi Leaf Extracts

  • Farmani, Fatemeh;Moein, Mahmoodreza;Amanzadeh, Amir;Kandelous, Hirsa Mostafapour;Ehsanpour, Zahra;Salimi, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.315-321
    • /
    • 2016
  • Background: Herbal medicine has becoming a potential source of treatment for different types of cancer including breast cancer. It has been shown that plants from the family Rhamnaceae possess anticancer activity. Objective: In this study, we determined the antiproliferative influence of Ziziphus spina christi- a species from this family- on the MCF-7 (human breast adenocarcinoma) cell line. Materials and Methods: The cytotoxicity of the total extract, ethanol, ethanol-aqueous (1:1) as well as aqueous fractions of Ziziphus spina christi leaves was evaluated through MTT assay against MCF-7 cell line. Cell cycle inhibition and apoptosis induction were assessed by flowcytometry cycle RNase/PI analysis and Annexin V-FLUOS, respectively. Apoptosis was also analyzed by immunoblotting assay. Results: Our results indicated that the ethanolic fraction had the lowest $IC_{50}$ value (0.02 mg/ml), induced cell cycle arrest at the G1/S phase as well as apoptosis after a 48h of treatment. Conclusions: This is the first report on anticancer effect of Ziziphus spina christi ethanolic fraction on breast cancer cells, providing a scientific basis for its utility in traditional medicine. However, further in-depth studies are needed to confirm the precise mechanisms.

Tas13D Inhibits Growth of SMMC-7721 Cell via Suppression VEGF and EGF Expression

  • He, Huai-Zhen;Wang, Nan;Zhang, Jie;Zheng, Lei;Zhang, Yan-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2009-2014
    • /
    • 2012
  • Objective: Taspine, isolated from Radix et Rhizoma Leonticis has demosntrated potential proctiective effects against cancer. Tas13D, a novel taspine derivative synthetized by structure-based drug design, have been shown to possess interesting biological and pharmacological activities. The current study was designed to evaluate its antiproliferative activity and underlying mechanisms. Methods: Antiproliferative activity of tas13D was evaluated by xenograft in athymic mice in vivo, and by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell migration assays with human liver cancer (SMMC-7721) cell lines in vitro. Docking between tas13D and VEGFR and EGFR was studied by with a Sybyl/Surflex module. VEGF and EGF and their receptor expression was determined by ELISA and real-time PCR methods, respectively. Results: Our present study showed that tas13D inhibited SMMC-7721 xenograft tumor growth, bound tightly with the active site of kinase domains of EGFR and VEGFR, and reduced SMMC-7721 cell proliferation (IC=34.7 ${\mu}mol/L$) and migration compared to negative controls. VEGF and EGF mRNAs were significantly reduced by tas13D treatment in a dose-dependent manner, along with VEGF and EGF production. Conclusion: The obtained results suggest that tas13D inhibits tumor growth and cell proliferation by inhibiting cell migration, downregulating mRNA expression of VEGF and EGF, and decreasing angiogenic factor production. Tas13D deserves further consideration as a chemotherapeutic agent.

Memantine Induces NMDAR1-Mediated Autophagic Cell Death in Malignant Glioma Cells

  • Yoon, Wan-Soo;Yeom, Mi-Young;Kang, Eun-Sun;Chung, Yong-An;Chung, Dong-Sup;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Objective : Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. Methods : Glioma cell lines (T-98 G and U-251 MG) were used for this study. Results : The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. Conclusion : Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1.

Anti-proliferative and angio-suppressive effect of Stoechospermum marginatum (C. Agardh) Kutzing extract using various experimental models

  • Vinayak, Rashmi;Puttananjaiah, Shilpa;Chatterji, Anil;Salimath, Bharati
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Abundant consumption of seaweeds in the diet is epidemiologically linked to the reduction in risk of developing cancer. In larger cases, however, identification of particular seaweeds that are accountable for these effects is still lacking, hindering the recognition of competent dietary-based chemo preventive approaches. The aim of this research was to establish the antiproliferative potency and angiosuppressive mode of action of Stoechospermum marginatum seaweed methanolic extract using various experimental models. MATERIALS/METHODS: Among the 15 seaweeds screened for antiproliferative activity against Ehrlich ascites tumor (EAT) cell line, Stoechospermum marginatum extract (SME) was found to be the most promising. Therefore, it was further investigated for its anti-proliferative activity in-vitro against choriocarcinoma (BeWo) and non-transformed Human embryonic kidney (HEK 293) cells, and for its anti-migratory/tube formation activity against HUVEC cells in-vitro. Subsequently, the angiosuppressive activity of S. marginatum was established by inhibition of angiogenesis in in-vivo (peritoneal angiogenesis and chorioallantoic membrane assay) and ex-vivo (rat cornea assay) models. RESULTS: Most brown seaweed extracts inhibited the proliferation of EAT cells, while green and red seaweed extracts were much less effective. According to the results, SME selectively inhibited proliferation of BeWo cells in-vitro in a dose-dependent manner, but had a lesser effect on HEK 293 cells. SME also suppressed the migration and tube formation of HUVEC cells in-vitro. In addition, SME was able to suppress VEGF-induced angiogenesis in the chorio allantoic membrane, rat cornea, and tumor induced angiogenesis in the peritoneum of EAT bearing mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provided further evidence of its angiosuppressive activity. CONCLUSIONS: Altogether, the data underline that VEGF mediated angiogenesis is the target for the angiosuppressive action of SME and could potentially be useful in cancer prevention or treatment involving stimulated angiogenesis.

Mechanism of Inhibition of HepG2 Cell Proliferation by a Glycoprotein from Hizikia fusiformis (톳(Hizikia fusiformis) 당단백질에 의한 HepG2 세포 증식 억제기전)

  • Ryu, Jina;Hwang, Hye-Jung;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2012
  • Hizikia fusiformis, a brown alga that is widely consumed in Korea, Japan, and China, possesses a number of potentially beneficial compounds, including antioxidants and anticoagulants. However, the molecular mechanisms of H. fusiformis in hepatoma cells have not been elucidated. This study investigated the antiproliferative effect and mechanism of action of a glycoprotein from H. fusiformis (HFGP) in HepG2 human hepatoma cells. In an MTS assay, 25 ${\mu}g/mL$ HFGP inhibited the proliferation of HepG2 cells by $52.36{\pm}2.37%$. HFGP caused the dose-dependent growth inhibition of HepG2 cells by inducing apoptosis and a sub-G1 phase arrest. The antiproliferative activity of HFGP was confirmed based on the expression of several apoptosis-related proteins, which was assessed by Western blot analysis. The expressions of Fas, Fas-associated death domain protein, Bax, and Bad was significantly up-regulated in HFGP-treated cells, and HFGP induced the translocation of Bax to mitochondria and the release of cytochrome c into the cytosol. Therefore, HFGP might be useful in the treatment of liver cancer.

ACE, α-Glucosidase and Cancer Cell Growth Inhibitory Activities of Extracts and Fractions from Marine Microalgae, Nannochloropsis oculata (해양 미세조류 Nannochloropsis oculata 추출.분획물의 ACE, α-glucosidase 및 암세포 저해 활성)

  • Cha, Seon-Heui;Kim, Min-Joo;Yang, Hye-Young;Jin, Chang-Beum;Jeon, You-Jin;Oda, Tatsuya;Kim, Dae-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • Extracts of the marine microalgae Nannochloropsis oculata were obtained using 80% methanol (MeOH) and water. The 80% MeOH extract was further fractionated with n-hexane, chloroform, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water to isolate the active fraction. Seven samples were prepared and their angiotensin converting enzyme (ACE), $\alpha$-glucosidase, and cancer cell growth inhibitory activities in vitro were determined. The most profound ACE inhibitory activity was observed in the chloroform fraction, while the others had moderate effects. By contrast, greater $\alpha$-glucosidase inhibitory activity was found in the EtOAc fraction, n-hexane fraction, and water extract of N. oculata. The antiproliferative effects of the extracts and fractions against HL-60, U937, CT-26, and SK-Hep1 cancer cells were also determined. The n-BuOH fraction had the strongest antiproliferative effects on CT-26 cells in a time-dependant manner (P<0.05). These results suggest that the extracts and fractions from N. oculata could be used as a potential functional food or as pharmaceutical ingredients.

Antiproliferative and Apoptotic Effects of Sasa quelpaertensis Nakai in Human Cancer Cells (제주조릿대의 인간 암세포 증식 저해와 자연사멸 효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.903-909
    • /
    • 2014
  • Plants are an invaluable source of potential new anti-cancer drugs. Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) is one of these plants with medical value, which is a bamboo grass widely distributed in Mt. Halla on Jeju Island, Korea. Here, we investigated the apoptotic effects of S. quelpaertensis leaf extracts in six human cancer cell lines (A549, MCF-7, HepG-2, Hela, HCT116 and A375). MTT assay signified the antiproliferative nature of S. quelpaertensis extracts against all tested cancer cells: S. quelpaertensis displayed slight cytotoxicity against A549, MCF-7 and HepG-2 cells, whereas it was exclusively cytotoxic to Hela, HCT116 and A375 cells. Apoptotic cells were evaluated using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). PI staining indicated increasing accumulation of Hela, HCT116 and A375 cells at sub-G1 phase. Further events like generation of nitric oxide ($NO^{\bullet}$) were accompanied in the S. quelpaertensis Nakai-induced apoptosis. Augmented $NO^{\bullet}$ generation resulted in the DNA fragmentation of Hela, HCT116 and A375 cells by treatment with S. quelpaertensis leaf extracts. These results suggest that S. quelpaertensis may be a potential natural resource for treating cancer cell. To identify the exact mechanisms of molecular mechanism of S. quelpaertensis induced apoptosis awaits further investigation.

Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells

  • Oh Seung-Min;Kim Yeon-Pan;Chung Kyu-Hyuck
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.354-362
    • /
    • 2006
  • Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on $E_2$ concentration $(\leq\;10^{-12}M)$. Kaempferol $(10^{-5}\;M)$ also caused antiproliferative effect on MCF-7 cell in the presence of $E_2\;(10^{-11}\;M)$ and restored to the addition of excess $E_2\;(10^{-7}\;M)$, which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at $10^{-4}\;M$, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected $(10^{-5}\;M)$, kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess $E_2\;(10^{-7}\;M)$ indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by $E_2$, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).

Antiproliferative Effect of RST Associated with the Inhibition of Cyclooxygenase-2 Expression and Prostaglandin E2 Release in Human Lung Carcinoma Cells (산두근 추출물이 인체폐암세포의 COX-2 발현 및 PGE2 생성에 미치는 영향)

  • Kim, Kang-Tae;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.907-915
    • /
    • 2007
  • In this study the effect of water extract of Sophora tonkinensis Gapnep (RST) was investigated on the growth of human lung carcinoma A549 cells. Exposure of A549 cells to RST resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay. The antiproliferative effect by RST treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. RST treatment did not induce the cell cycle arrest and the levels of tumor suppressor p53 as well as cyclin-dependent kinase inhibitor p21(WAF1/CIP1). It was found that RST treatment decreased the levels of cyclooxygenase (COX) -2 mRNA and protein expression without significant changes in the expression of COX-1 and inducible nitric oxide synthase (iNOS), which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. RST treatment also slightly inhibited the levels of human telomerase reverse transcriptase (hTERT) mRNA and protein expression, and the activity of telomerase. Taken together, these findings suggested that RST-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the inhibition of COX-2 expression and PGE2 production. These results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of RST.

Anti-Proliferative Effect of Tetraphenylporphine (TPP) as an Iron Chelator on Vascular Smooth Muscle Cells and its Release Profiles from Polymer Coating Layer (철 킬레이터로서의 tetraphenylporphine의 혈관평활근세포의 성장억제효과와 고분자 코팅막으로부터의 방출 특성)

  • Park, Min-Hee;Kang, Soo-Yong;Park, Hyun-Jeong;Seo, Jin-Seon;Park, Young-A;Kim, Ji-Eun;Kim, Yang-Geun;Whang, Bae-Geon;Munkhjargal, Odonchimeg;Shim, Young-Key;Kho, Weon-Gyu;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • The drug-eluting stent (DES) implantation is a widely acceptable treatment for coronary heart disease. It was reported that iron chelator had anti-proliferative effect on human vascular smooth muscle cells (HA-VSMCs). In this study, tetraphenylporphine (TPP) was selected as an iron chelator and drug for DES. MTT assay showed that TPP had antiproliferative effect on HA-VSMCs. TPP and polycaprolactone (PCL) were coated onto stainless steel plate using a spraycoating method. From the surface morphology examination of the coated plate by SEM, smooth polymer coating layer could be observed. The thickness of coating layer could be controlled by changing repeating time of coating. From in vitro release test, sustained release of TPP was observed from plate during two weeks. Thus, TPP as iron chelator can be used as drug for stent coating because of its antiproliferative effect and sustain release profile.