• 제목/요약/키워드: Antioxidative response

검색결과 136건 처리시간 0.023초

Optimization of Enzymatic Hydrolysis with Cryotin F on Antioxidative Activities for Shrimp Hydrolysate Using Response Surface Methodology

  • Lee, Yang-Bong;Raghavan, Sivakumar;Nam, Min-Hee;Choi, Mi-Ae;Hettiarachchy, Navam S.;Kristinsson, Hordur G.;Marshall, Maurice R.
    • Preventive Nutrition and Food Science
    • /
    • 제14권4호
    • /
    • pp.323-328
    • /
    • 2009
  • Cryotin F could be used for hydrolyzing shrimp byproducts into bioactive ingredients, which could be used as value-added products. The objective of this study was to investigate the optimum condition for antioxidative activities of the enzymatic hydrolysate produced with Cryotin F using response surface methodology with central composite rotatable design. Shrimp byproducts (shells and heads) were hydrolyzed with Cryotin F. The experimental ranges of the independent variables for 20 experimental runs were 28.2-61.8${^{\circ}C}$ reaction temperature, pH 6-10 and 0.5-5.5% enzyme concentration. The degree of hydrolysis for the reaction products was measured. Their antioxidative activities were measured using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity and Fe-chelating activity. The experimental method with central composite rotatable design was well designed to investigate the optimum condition for biofunctional ingredients with antioxidative activities using Cryotin F because of their high R2 values of 0.97 and 0.95 for DPPH-scavenging activity and Fe-chelating activity, respectively. Change in enzyme concentration did not significantly affect their antioxidative activities (p<0.05). Both DPPH scavenging activity and chelating activity against Fe for the enzyme hydrolysates were more affected by the pH of enzyme hydrolysis than by their action temperature. DPPH-scavenging activity was higher at acidic pH than alkali pH, while chelating activity against Few was inversely affected. Hydrolysate of shrimp byproducts showed high antioxidative activities depending on the treatment condition, so the optimum treatment of enzymatic hydrolysate with Cryotin F and other proteases can be applied to shrimp byproducts (shells) and other protein sources for biofunctional ingredients.

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

Antioxidative Properties of Amaranth Cauline Leaf and Suppressive Effect against CT-26 Cell Proliferation of the Sausage Containing the Leaf

  • Lee, Heejeong;Joo, Nami
    • 한국축산식품학회지
    • /
    • 제38권3호
    • /
    • pp.570-579
    • /
    • 2018
  • The study investigated antioxidative properties and rectal cancer cell inhibition effect of amaranth (Amaranthus cruentus L.) cauline leaves (ACL) to produce the sausage with ACL powder (ACLP). Antioxidative effects of ACLP prepared with different stem lengths (10-45 cm) were evaluated through DPPH, ABTS, reducing power, total phenol, and total flavonoid. Inhibition effect on rectal cancer cells growth was also examined with CT-26 cell. To determine appropriate ACL amounts in sausage formula, response surface methodology was used. The sausages without ACL (control) and the sausage with ACL (ACLP sausage) were the subjected to the examinations of antioxidation, growth inhibition on CT-26, and physicochemical properties (pH and water content). ACLP made from the leaf with 15 cm length stem generally showed the highest antioxidative effect through results of DPPH, ABTS, reducing power, total phenol, and total flavonoid. ACLP also showed inhibition effect on the proliferation of CT-26, depending on concentration of ACLP. The surface response model showed that 4.87 g of ACLP was optimized amount for sausage production. Physicochemical properties between optimized ACLP and control sausages were not significantly different. Higher antioxidative effect of optimized ACLP sausage extract was observed (p<0.05) in antioxidation tests than control sausage extract except for DPPH. Cell viability of CT-26 cells were higher (p<0.05) in ACLP than in control sausage extracts. These results indicate that ACLP has functional effects on antioxidation activity and growth inhibition on CT-26 cell, and thus, it should be useful as a supplement in sausage, which may some effect as ACLP itself.

Hesperidin 과 Naringin 이 흰쥐의 항산화능에 미치는 영향 (Effects of Hesperidin and Naringin on Antioxidative Capacity in the Rat)

  • 손정숙
    • Journal of Nutrition and Health
    • /
    • 제31권4호
    • /
    • pp.687-696
    • /
    • 1998
  • This study was performed to investigate effects of hesperidin and naringin on linpid peroxide formation and antioxidative enzyme activities in rats. Thiobarbituric acid reactive substance (TBARS) concentrations were measured in plasma and liver. Catalase, superoxide dismutase, and glutathione peroxidase activities were measured in erythrocyte and liver. Forty-nine male Sprague-Dauley rats weighing 275.3$\pm$3.3g were blocked into seven groups according to body weight and were raised fro four weeks on diets containing 0.25, 0.50 or 1.00%(w/w) hesperidin or naringin . Food intake, weight gain , food efficiency ratio, and weights of liver, kidney, spleen ,and epididymal fat pad were not significantly different among groups. In 0.50 and 1.00% naringin groups , plasma TBARS concentrations were significantly decreased with a dose response patter. In 0.25, 0.50 and 1.00% hesperidin groups, liver TBARS concentrations were significantly decreased without a dose dependent patter. Antiosidative enzyme activities in erythrocyte and liver were not significantly affected by type and amountof dietary bioflavonoid, but in the 1.00% hesperidin group, catalase, superoxide dismutase, and glutahione perosidase activities in linver showed a tendency to increase. In conclusion, naringin inhibited lipid peroxide formation with a dose response pattern in plasma without changing the activities of antioxidative enzymes. Hesperidin adminstration, regardless of the level in the diet, inhibited lipid peroxide formation in liver.

  • PDF

Optimization of Extraction Condition of Methyl Jasmonate-treated Wild Ginseng Adventitious Root Cultures using Response Surface Methodology

  • Liu, Qing;Jo, Yang Hee;Ahn, Jong Hoon;Kim, Seon Beom;Paek, Kee-Yoeup;Hwang, Bang Yeon;Park, So-Young;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.103-108
    • /
    • 2018
  • The usage of wild ginseng (Panax ginseng C.A. Meyer) has been limited due to short supply and high price. Therefore, sufficient production as well as efficient extraction of mountain ginseng are required for the development as products. In this study, wild ginseng adventitious root cultures were prepared for efficient production with advantages of fast growth and stable production. Treatment of methyl jasmonate (MJ) to wild ginseng adventitious root cultures increased the extraction yield and antioxidative activity. Further investigation on effect of extraction conditions suggested the importance of ethanol concentration on antioxidative activity and extraction yield of MJ-treated wild ginseng adventitious root cultures. Optimized extraction condition of MJ-treated wild ginseng adventitious root cultures for maximum extraction yield and antioxidative activity was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Extraction of 1 g MJ-treated wild ginseng adventitious root culture with 30 ml of 9% ethanol at $30^{\circ}C$ produced 310.2 mg extract with 71.0% antioxidative activity at $100{\mu}g/ml$. Taken together, MJ-treated wild ginseng adventitious root culture is valuable source for wild ginseng usage and optimized extraction condition can be used for the development of functional products or folk remedies.

삼릉 에탄올추출물의 in vitro 피부 미백 유효성 (Effectiveness of Scirpi rhizoma Ethanol Extract on Skin Whitening Using in vitro Test)

  • 고주영;김영철
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권1호
    • /
    • pp.69-77
    • /
    • 2010
  • The purpose of this study is to evaluate the effectiveness of Scirpi rhizoma ethanol extract (SREE) on skin whitening using in vitro test. In the antioxidative activities, it was found that SREE contains 38.9 mg/g of polyphenol and 74.5 mg/g of flavonoid in total. In the electron donating ability, SREE showed a dose-dependent response, showing a high antioxidative capacity of 86.1% at 1000 ppm. It was found that the maximum permissible level of SREE to Melan-a cells was over 200 ppm, showing a quite low toxicity of SREE against Melan-a cells. Both in the inhibitory measurement for tyrosinase activity and melanogenesis using Melan-a cells, SREE presented a dose-dependent response with excellent efficacy.

항산화 물질이 UV-B에 대한 콩의 감수성에 미치는 영향 (Effects of Antioxidants on UV-B Susceptibility in Soybean)

  • 김학윤;박이상;이인중;신동현;김길웅
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.633-638
    • /
    • 1998
  • To determine whether the enhanced UV-B causes oxidative stress, and to test the relationship between plant growth response and biochemical defense response to UV-B, two soybean plants, Keunolkong, a highly UV-B susceptible cultivar, and Danyeubkong, a less UV-B susceptible cultivar, were subjected to the enhanced UV-B [daily dose : 0.06 (control) and 11.32 (enhanced UV-B) kJ $m^{-2}$ ; $UV-B_{BE}$] for 3 weeks. Contents of malondialdehyde and total carotenold were increased in Keunolkong compared with Danyeubkong by UV-B. In control plants, ascorbate level of Danyeubkong was 3 times higher than that of Keunolkong. The ratio of dehydroascorbate/ascorbate was highly increased in Keunolkong by UV-B . The activities of antioxidative enzyme such as superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase and glutathione reductase were increased in both cultivars by UV-B. This results indicate that enhanced UV-B caused oxidative stress in both two cultivars, especially in Keunolkong. Susceptibility of two soybean cultivars to UV-B is closely related to the levels of antioxidants such as carotenoid and ascorbate.

  • PDF

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Effects of Calcium and Nitrogen on the Growth and Antioxidative Enzyme Activity in Soybean (Glycine max) under Saline Condition

  • Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제29권2호
    • /
    • pp.157-163
    • /
    • 2006
  • Growth of G. max treated with $NO_3^-$-N was decreased by high NaCl treatments, but $NH_4NO_3$-fed plants showed good growth with enhanced activity of antioxidative enzymes (SOD and APX). Especially, activity of APX was higher in 5 mM $NH_4NO_3$-fed plants than other types of N-supplied plants throughout the stress period. Higher SOD activity under salt stress was accompanied by increase in APX activity in 5 mM $NH_4NO_3$-fed plants. Similarly, application of calcium confirmed somewhat positive effects on growth. Salt-treated soybean plants showed the best growth response with the increase of SOD and APX activity at an additional 5 mM calcium treatment. Especially, the increase of SOD activity through the strengthened CuZn-SOD isoform was remarkable.

상백피 분말 첨가 식빵의 품질특성 및 제조조건 최적화 (Quality Characteristics and Optimization of Bread with Mori Cortex Radicis Powder Using Response Surface Methodology)

  • 정민주;정희선;주나미
    • 한국식생활문화학회지
    • /
    • 제28권5호
    • /
    • pp.512-524
    • /
    • 2013
  • The purpose of this study was to investigate the antioxidative effects of Mori Cortex Radicis powder and to determine the optimal mixing ratio of Mori Cortex Radicis powder and water in the preparation of bread. The optimal sensory composite recipe was determined by producing bread with different levels of Mori Cortex Radicis powder and water. The analysis was performed using response surface methodology and a sensory evaluation was performed with the data. Ten experimental recipes, including two with reference points in the composition, were selected. In terms of the antioxidative effects of Mori Cortex Radicis powder, the $IC_{50}$ for total phenolic content and DPPH free radical scavenging activity were 149.56 GAE/g dry powder and 137.77 /mL respectively. Measurement results of the mechanical properties showed differences in volume (p<0.05), baking loss (p<0.05), yellowness (p<0.01), lightness (p<0.01), redness (p<0.01), hardness (p<0.01) and springiness (p<0.05). The sensory measurements showed significant values for color (p<0.05), appearance (p<0.05), flavor (p<0.01), taste (p<0.01), and overall quality (p<0.01). Overall, based on numerical and graphical methods, the optimal formulation was determined to be 21.16 g of Mori Cortex Radicis powder and 372.47 g of water.