• 제목/요약/키워드: Antimicrobial peptide resistance

검색결과 29건 처리시간 0.028초

다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드 (Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria")

  • 박성철;나재운
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.429-432
    • /
    • 2012
  • 최근 항생제에 대한 내성이 빠르게 확산됨에 따라 이를 극복하기 위해 새로운 항생제들을 찾기 위한 노력이 많은 연구자들에 의해 이루어지고 있다. 미생물의 외부공격에 대해 모든 생명체들은 방어물질을 분비하거나 내재하고 있는 데 그 중 하나가 항균 펩타이드이며, 전 세계적으로 활발한 연구가 이루어지고 있고 새로운 차세대 항생제로써 인식 되어진다. 이에 본 총설에서는 항균 펩타이드의 미생물에 대한 항생활성, 작용기작과 개발현황에 대해 고찰하고자 한다.

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Biofilm Formation, Antimicrobial Peptide Resistance, and Hydrogen Peroxide Resistance in Livestock-Associated Staphylococcus aureus Isolates

  • Lee, Gi Yong;Kim, Sun Do;Yang, Soo-Jin
    • 한국식품위생안전성학회지
    • /
    • 제35권4호
    • /
    • pp.391-397
    • /
    • 2020
  • 최근 가축에서 유래된 메티실린에 내성이 있는 황색포도상구균과 감수성을 보이는 황색포도상구균(LA-MRSA/LA-MSSA)에 의한 사람의 감염증이 증가하는 추세이다. 이러한 LA-MRSA 및 LA-MSSA균주는 가축을 비롯한 축산업에 종사하는 사람들에게 전파가 이루어질 수 있다. 본 연구에서는 원유, 육우, 축산 종사자에서 분리된 20개의 MRSA 및 MSSA 균주를 이용하여 생물막 형성, 항균 펩타이드에 대한 저항성 및 과산화수소 저항성과 같은 황색포도상구균의 주요 병원성 인자를 평가하였다. 생물막 형성 실험에서는 MRSA와 MSSA간의 차이는 없었으며, 동물 유래 분리주와 사람 유래 분리주들 간의 비교에서도 차이가 없음이 확인되었다. BMAP-28에 대한 감수성 시험 결과 MRSA-MSSA 또는 동물 분리-사람 분리 간의 차이가 없음을 확인하였다. 생물막 형성과 BMAP-28 감수성과는 달리, 원유에서 분리된 MRSA 균주들의 H2O2에 대한 내성 증가가 확인 되었다. 본 연구를 통하여 가축 및 축산업 종사자에서 분리된 LA-MRSA와 LA-MSSA 균주의 주요 병원성 인자를 확인하였으며, 숙주 및 환경에서의 생존과 전파 가능성을 이해하는데 기초 자료로 활용 될 수 있을 것이다.

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides

  • Nan, Yong-Hai;Shin, Song-Yub
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.747-752
    • /
    • 2011
  • To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

De Novo Design and Their Antimicrobial Activity of Stapled Amphipathic Helices of Heptapeptides

  • Dinh, Thuy T.T.;Kim, Do-Hee;Lee, Bong-Jin;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3632-3636
    • /
    • 2014
  • In this study we designed and synthesized several heptapeptides that are enforced to form an amphipathic helix using all-hydrocarbon stapling system and evaluated their antimicrobial and hemolytic activities. The antimicrobial activity showed clear structure-activity relationships, confirming the importance of helicity and amphipathicity. Some stapled heptapeptides displayed a moderate antimicrobial activity along with a low hemolytic activity. To our best knowledge, although not highly potent, these stapled peptides represent the shortest helical amphipathic antimicrobial peptides reported to date. The preliminary data obtained in this work would serve as a good starting point for further developing short analogs of amphipathic helical antimicrobial peptides.

Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법 (A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library)

  • 박주희;한옥경;이백락;김정현
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.278-284
    • /
    • 2007
  • 생체 염 농도에서도 항균활성을 유지할 수 있는 선형 ${\alpha}$-helical 항균 펩타이드를 M13 펩타이드 라이브러리로부터 탐색할 수 있는 새로운 방법을 개발하였다. M13의 pIII은 magainin 유도체인 MSI-344와 indolicidin과 융합된 상태에서도 파아지의 viability에 영향을 주지 않는 것으로 보아, MSI-344와 indolicidin의 대장균에 대한 독성을 중화할 수 있는 것으로 판단되며, 따라서 대장균에서 항균 펩타이드 라이브러리의 제조가 가능함을 증명하였다. 선형 항균 펩타이드의 보존된 부위를 바탕으로, 13개의 아미노산 잔기로 구성된 semi-combinatorial 항균 펩타이드 라이브러리를 M13를 이용하여 제조하였다. 제조된 파아지 라이브러리는 먼저 적혈구에 흡착시켜, 높은 용혈 역가를 가질 가능성이 있는 파아지를 제거한 후, 높은 염 농도에서 Pseudomonas aeruginosa와 Staphylococcus aureus에 흡착할 수 있는 파아지를 탐색하였다. 탐색된 펩타이드들은 염이 없는 조건에서는 비교적 낮은 항균 역가를 보였지만, P06와 S18 펩타이드의 경우, 생체 염 농도보다 높은 150 mM $Na^+$, 2 mM $Mg^{2+}$, 2 mM $Ca^{2+}$의 조건에서도 항균 역가가 영향을 받지 않았으며, 심각한 용혈 역가 또한 보이지 않았다. 본 연구에서 개발한 대상 세균에 대한 흡착능력을 이용한 탐색방법은 salt-tolerant antimicrobial peptide의 개발의 새로운 가능성을 제시하였다.