Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.747

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides  

Nan, Yong-Hai (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University)
Shin, Song-Yub (Department of Bio-Materials, Graduate School, School of Medicine, Chosun University)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 747-752 More about this Journal
Abstract
To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.
Keywords
Antimicrobial peptide; Disulphide bond; Homo-dimeric ${\alpha}$-helical peptide; LPS-neutralizing activity; Salt resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L. and Hodges, R. S. (2005) Rational design of ${\alpha}$-helical antimicrobial peptides with enhanced activities and specificity/ therapeutic index. J. Biol. Chem. 280, 12316-12329.   DOI   ScienceOn
2 Fazio, M.A., Jouvensal, L., Vovelle, F., Bulet, P., Miranda, M. T., Daffre, S. and Miranda, A. (2007) Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers 88, 386-400.   DOI   ScienceOn
3 Lee, J., Y., Yang, S. T., Lee, S. K., Jung, H. H., Shin, S. Y., Hahm, K. S. and Kim, J. I. (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J. 275, 3911-3920.   DOI   ScienceOn
4 Martin, G. S., Mannino, D. M., Eaton, S. and Moss, M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546-1554.   DOI   ScienceOn
5 Lee J, Y., Yang, S. T., Kim, H. J., Lee, S. K., Jung, H. H., Shin, S. Y. and Kim, J. I. (2009) Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidinderived antibacterial peptide. BMB Rep. 42, 586-592.   과학기술학회마을   DOI   ScienceOn
6 Friedrich, C., Scott, M. G., Karunaratne, N., Yan, H. and Hancock, R. E. W. (1999) Salt-resistant ${\alpha}$-helical cationic antimicrobial peptides. Antimicrob. Agents Chemother. 43, 1542-1548.
7 Bowdish, D. M., Davidson, D. J., Scott, M. G. and Hancock, R. E. (2005) Immunomodulatory activity of small host defense peptides. Antimicrob. Agents Chemother. 49, 1727-1732.   DOI   ScienceOn
8 Rosenfeld, Y., Papo, N. and Shai, Y. (2006) Endotoxin (lipopolysaccharide) Neutralization by innate immunity host-defense peptides. J. Biol. Chem. 281, 1636-1643.   DOI   ScienceOn
9 Yomogida, S., Nagaoka, I. and Yamashita, T. (1996) Purification of the 11-and 5-kDa antibacterial polypeptides from guinea pig neutrophils. Arch. Biochem. Biophys. 328, 219-226.   DOI   ScienceOn
10 Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A. and Tossi, A. (2005) Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 272, 4398-4406.   DOI   ScienceOn
11 Dempsey, C. E., Ueno, S. and Avison, M. B. (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide dimerized magainin analogue. Biochemistry 42, 402-409.   DOI   ScienceOn
12 Dalla Serra, M., Cirioni, O., Vitale, R. M., Renzone, G., Coraiola, M., Giacometti, A., Potrich, C., Baroni, E., Guella, G., Sanseverino, M., De Luca, S., Scalise, G., Amodeo, P. and Scaloni, A. (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemistry 47, 7888-7899.   DOI   ScienceOn
13 Jang, W. S., Kim, C. H., Kim, K. N., Park, S. Y., Lee, J. H., Son, S. M. and Lee, I. H. (2003) Biological activities of synthetic analogs of halocidin, an antimicrobial peptide from the tunicate Halocynthia aurantium. Antimicrob. Agents Chemother. 47, 2481-2486.   DOI   ScienceOn
14 Tencza, S. B., Creighton, D. J., Yuan, T., Vogel, H. J., Montelaro, R. C. and Mietzner, T. A. (1999) Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J. Antimicrob. Chemother. 44, 33-41.   DOI
15 Batista, C. V., Scaloni, A., Rigden, D. J., Silva, L. R., Rodrigues Romero. A., Dukor, R., Sebben, A., Talamo, F. and Bloch, C. (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett. 494, 85-89.   DOI   ScienceOn
16 Lee, I. H., Lee, Y. S., Kim, C. H., Kim, C. R., Hong, T., Menzel, L., Boo, L. M., Pohl, J., Sherman, M. A., Waring, A. and Lehrer, R. I. (2001) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim. Biophys. Acta. 1527, 141-148.   DOI   ScienceOn
17 Nagaoka, I., Tsutsumi-Ishii, Y., Yomogida, S. and Yamashita, T. (1997) Isolation of cDNA encoding guinea pig neutrophil cationic antibacterial polypeptide of 11 kDa (CAP11) and evaluation of CAP11 mRNA expression during neutrophil maturation. J. Biol. Chem. 272, 22742-22750.   DOI   ScienceOn
18 Wu, M., Maier, E., Benz, R. and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235-7242.   DOI   ScienceOn
19 Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A. and Tossi, A. (2005) Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J. 272, 4398-4406.   DOI   ScienceOn
20 Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M. and Wilson, J. M. (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553-560.   DOI   ScienceOn
21 Lee, I. H., Cho, Y. and Lehrer, R. I. (1997) Effects of pH and salinity on the antimicrobial properties of clavanins. Infect. Immun. 65, 2898-2903.
22 Tam, J. P., Lu, Y. A. and Yang, J. L. (2002) Correlations of cationic charges with salt sensitivity and microbial specificity of cystine-stabilized ${\beta}$-strand antimicrobial peptides. J. Biol. Chem. 277, 50450-50456.   DOI   ScienceOn
23 Jang, W. S., Kim, K. N., Lee, Y. S., Nam, M. H. and Lee, I. H. (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 521, 81-86.   DOI   ScienceOn