• Title/Summary/Keyword: Antimicrobial peptide resistance

Search Result 29, Processing Time 0.03 seconds

Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria" (다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드)

  • Park, Seong-Cheol;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.429-432
    • /
    • 2012
  • According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Biofilm Formation, Antimicrobial Peptide Resistance, and Hydrogen Peroxide Resistance in Livestock-Associated Staphylococcus aureus Isolates

  • Lee, Gi Yong;Kim, Sun Do;Yang, Soo-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.391-397
    • /
    • 2020
  • Human infections with livestock-associated methicillin-resistant/-susceptible Staphylococcus aureus (LA-MRSA/LA-MSSA) have recently been increasing significantly. These LA-MRSA and LA-MSSA strains can be transmitted to individuals who have frequent contact with livestock animals and foods of animal origin. In this study, major virulence potentials of S. aureus such as biofilm formation, antimicrobial peptide resistance, and in vitro hydrogen peroxide (H2O2) resistance were assessed using 20 MRSA and MSSA strains isolated from raw milk, beef cattle, and workers in the livestock industry. Static biofilm formation assays revealed that there is no difference in levels of biofilm production between MRSA versus MSSA or bovine- versus human-associated strains. In vitro BMAP (bovine myeloid antimicrobial peptide)-28 susceptibility assays also revealed no difference in the resistance to the antimicrobial peptide between MRSA versus MSSA or bovine- versus human-associated S. aureus strains. However, LA-MRSA strains displayed increased resistance to H2O2, which may play an important role in survival and dissemination of the pathogen in livestock. These results provide an important basis for understanding pathogenic potentials of LA-MRSA and LA-MSSA strains in human and animal hosts.

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides

  • Nan, Yong-Hai;Shin, Song-Yub
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.747-752
    • /
    • 2011
  • To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

De Novo Design and Their Antimicrobial Activity of Stapled Amphipathic Helices of Heptapeptides

  • Dinh, Thuy T.T.;Kim, Do-Hee;Lee, Bong-Jin;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3632-3636
    • /
    • 2014
  • In this study we designed and synthesized several heptapeptides that are enforced to form an amphipathic helix using all-hydrocarbon stapling system and evaluated their antimicrobial and hemolytic activities. The antimicrobial activity showed clear structure-activity relationships, confirming the importance of helicity and amphipathicity. Some stapled heptapeptides displayed a moderate antimicrobial activity along with a low hemolytic activity. To our best knowledge, although not highly potent, these stapled peptides represent the shortest helical amphipathic antimicrobial peptides reported to date. The preliminary data obtained in this work would serve as a good starting point for further developing short analogs of amphipathic helical antimicrobial peptides.

A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library (Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법)

  • Park, Ju-Hee;Han, Ok-Kyung;Lee, Baek-Rak;Kim, Jeong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.278-284
    • /
    • 2007
  • A novel screening strategy for salt-resistant antimicrobial peptides from a M13 peptide library was developed. Fusion of MSI-344, a magainin derivative and indolicidin to pIII coat proteins did not significantly affect viability of the recombinant phages, which indicated that the pIII could neutralize toxicity of the antimicrobial peptides and therefore it is possible to construct antimicrobial peptide library in Escherichia coli. On the basis of the conserved sequence of ${\alpha}$-helical antimicrobial peptides, a semi-combinatorial peptide library was constructed in which the peptides were displayed by pIII. To remove hemolytic activity from the library, the phages bound to red blood cells were removed, and the subtracted phage library was screened for binding to target bacteria Pseudomonas aeruginosa and Staphylococcus aureus under high salt concentrations. The screened peptides showed relatively low antimicrobial activity against the target bacteria. However, antimicrobial activities of the screened peptides P06 and S18 were not affected by the cation concentrations of 150 mM $Na^+$, 2 mM $Mg^{2+}$ and 2 mM $Ca^{2+}$ without significant hemolytic activity. This screening strategy that is based on binding capacity to target cells provides new potential to develop salt-tolerant antimicrobial peptides.