• Title/Summary/Keyword: Antimicrobial copper

Search Result 31, Processing Time 0.026 seconds

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 부패 특성과 Copper Alloy Metal Fiber의 부패 방지 장치에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • Copper alloy metal fiber was incorporated into the conventional water-soluble metal working fluids to increase the antimicrobial activity. Fluid treated by copper alloy metal fiber is shown that bacteria is disappeared whereas that untreated metal fiber is increased bacteria as increasing the life time. When the electrochemical potential of Cu/Zn ion is -268mV, radicals with molecular oxygen are easily made. Especially, hydroperoxide radical shows strong toxicity to the strains, leading to the conformational change of plasma membrane. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 Copper Alloy Metal Fiber에 의한 항균 특성에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.233-237
    • /
    • 2007
  • This study is focused on the possibility of copper alloy metal fiber for an antimicrobial activity in the water soluble metal working fluids. Electrochemical potential of Cu/Zn ion is -268mV, and easily makes radicals with molecular oxygen. Especially, hydroperoxide radical shows strong toxicity to the strains. Plasma membrane causes conformational change when hydroperoxide radical binds to plasma membrane. Elution of copper ion from copper alloy metal fiber is detected in metal working fluid. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

  • Wazir, Arshad Hussain;Khan, Qudratullah;Ahmad, Nisar;Ullah, Faizan;Quereshi, Imdadullah;Ali, Hazrat
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.80-84
    • /
    • 2022
  • Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

A Study on the Antimicrobial Activity of Microcystis aeruginosa by Redox Reaction of Cu-Zn Alloy Metal Fiber (구리-아연 합금사의 산화-환원 반응을 통한 Microcystis aeruginosa의 사멸 특성에 관한 연구)

  • Song, Ju-Yeong;Kim, Hee-Seon;Lee, Sang-Ho;Kim, Jong-Hwa;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • This study is focused on the antimicrobial activity of cyanobacteria Microcystis aeruginosa by the reduction and oxidation reaction of copper and zinc alloy metal fiber filter. Cu/Zn ion is easily makes radicals with molecular hydroperoxide. Especially, hydroperoxide radical shows strong toxicity to the strains. Plasma membrane causes conformational change when hydroperoxide radical binds to plasma membrane. Elution of copper ion from copper and zinc alloy metal fiber is detected in the cyanobacteria solution as 0.5 ppm, and that of zinc ion is 0 ppm respectively. Zinc ion is figured to form a hydroxide in the cyanobacteria solution and precipitated to form a sludge. The concentration of chlorophyll-a in the cyanobacteria solution was proved to be the index of antimicrobial level of Microcystis aeruginosa.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

New Unsymmetric Dinuclear Copper(II) Complexes of Trans-disubstituted Cyclam Derivatives: Spectral, Electrochemical, Magnetic, Catalytic, Antimicrobial, DNA Binding and Cleavage Studies

  • Prabu, R.;Vijayaraj, A.;Suresh, R.;Jagadish, L.;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1669-1678
    • /
    • 2011
  • Six new binuclear copper(II) complexes have been prepared by template condensation of the dialdehydes 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-a) and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-b) with appropriate aliphatic diamines, and copper(II) perchlorate. The structural features of the complexes have been confirmed by elemental analysis, IR, UV-vis and mass spectra etc. The electrochemical behavior of all the copper(II) complexes show two irreversible one electron reduction process. The room temperature magnetic moment studies depict the presence of an antiferromagnetic interaction in the binuclear complexes. The catechol oxidation and hydrolysis of 4-nitrophenylphosphate were carried out by using the complexes as catalyst. The antimicrobial screening data show good results. The binding of the complexes to calf thymus DNA (CT DNA) has been investigated with absorption and emission spectroscopy. The complex [$Cu_2L^{1a}$] displays significant cleavage property of circular plasmid pBR322 DNA in to linear form. Spectral, electrochemical, magnetic and catalytic studies support the distortion of the copper ion geometry that arises as the macrocyclic ring size increases.

Comparison of Antimicrobial Activity of Electrolyzed Water Using Various Electrodes against Biofilm of Oral Pathogens

  • Yoo, Yun S;Shin, Hyun-Seung;Lee, Sung-Hoon
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.135-141
    • /
    • 2015
  • Biofilms of oral microbes can cause various diseases in the oral cavity, such as dental caries, periodontitis and mucosal disease. Electrolyzed water generated by an electric current passed via water using a metal electrode has an antimicrobial effect on pathogenic bacteria which cause food poisoning. This study investigated the antimicrobial activity of electrolyzed waters using various metal electrodes on the floatage and biofilms of oral microbes. The electrolyzed water was generated by passing electric current using copper, silver and platinum electrodes. The electrolyzed water has a neutral pH. Streptococcus mutans, Porphyromonas gingivalis and Tannerella forsythia were cultured, and were used to form a biofilm using specific media. The floatage and biofilm of the microbes were then treated with the electrolyzed water. The electrolyzed water using platinum electrode (EWP) exhibited strong antimicrobial activity against the floatage and biofilm of the oral microbes. However, the electrolyzed water using copper and silver electrodes had no effect. The EWP disrupted the biofilm of oral microbes, except the S. mutans biofilm. Comparing the different electrolyzed waters that we created the platinum electrode generated water may be an ideal candidate for prevention of dental caries and periodontitis.

Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies

  • Gurumoorthy, P.;Ravichandran, J.;Karthikeyan, N.;Palani, P.;Rahiman, A. Kalilur
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2279-2286
    • /
    • 2012
  • The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-aminopropylamino)ethane produce the 12-membered $N_3O$ and 17-membered $N_4O$ macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear $N_3O$ and $N_4O$ copper(II) complexes show one irreversible oneelectron reduction wave at $E_{pc}=-1.35$ and -1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at $E_{pc}=-1.25$ and -1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at $E_{pa}=+0.84$ and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

Copper Complexes of Some Amino Acid Derivatives of Substituted Coumarilic Acid

  • Ibrahim, Tarek M.;Shabana, Ahmed A.;Hammad. Hamdy A.
    • Archives of Pharmacal Research
    • /
    • v.15 no.2
    • /
    • pp.130-133
    • /
    • 1992
  • A series of copper complexes of some amino acid derivatives of 6-methoxy 3-methyl-coumarilic acid were prepared. The infrared, visible spectra and magnetic susceptibility of these compounds were reported. All copper complexes were foundt to have antimicrobial activity against gram-positive bacteria only.

  • PDF