• Title/Summary/Keyword: Antimicrobial Peptides

Search Result 207, Processing Time 0.025 seconds

Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1

  • Park, Yoo Jung;Lee, Ha Young;Jung, Young Su;Park, Joon Seong;Hwang, Jae Sam;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.479-484
    • /
    • 2015
  • In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Synthesis and Characterization of GGN4 and its Tryptophan Substituted Analogue Peptides

  • Kim, Se-Ha;Kim, Ji-Young;Lee, Byeong-Jae;Kim, Soon-Jong
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • Gaegurin 4 (GGN4), a broad-spectrum antibiotic, is a 37-amino acid peptide isolated from the Korean frog, Rana rugosa. In this study, we have chemically synthesized and purified GGN4 analogues where the C-terminal portion is truncated and/or substituted with tryptophan. These peptides show significantly different biological activities depending on the location of tryptophan and the number of amino acids truncated from the C-terminal end. While deletion of 9 amino acids from the C-terminal seems to be marginally tolerable in maintaining the antimicrobial activity, further deletion of up to 14 amino acid residues decreases the potency by more than 60-fold towards Gram-positive, and 10-fold towards Gram-negative, bacteria. Surprisingly, the reduced activity of the shorter peptide can be completely restored by a single substitution of aspartic acid 16 to tryptophan 16 (D16W). Also, the truncation seems to decrease the specificity of antibiotic activity more towards Gram-positive than towards Gram-negative bacteria studied. These data suggest a partial role of the C-terminal region in determining the binding specificity and the activity of peptides upon binding to their target cell membranes.

  • PDF

Bioactive compounds and their future prospects

  • Kumar, Brajesh;Survay, Nazneen Shaik;Me, Jang;Ko, Eun-Young;Seok, Eom-Hee;Upadhyay, Chandrama Prakash;Awasthi, Satish Kumar;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.12-12
    • /
    • 2010
  • Nature applied flavanoids, glucosinolates and peptides for a great variety of functions. Flavanoids and glucosinolates are rich source of antioxidants, generally present in colored fruits and vegetables. Quercetin and its glucosides areone of the best examples of flavonol used in daily diet. Whereas peptides can act as antimicrobial, chemical messenger, neurotransmitter etc that regulating various life processes. Aspartame, a dipeptide is used as artificial sweetener and oxytocin for medical purposes, gained importance in everyday life. So, flavanoids, glucosinolates, peptides and their derivatives continue to hold the attention of synthetic chemists, agriculturists and biologists. Apart from a variety of naturally occurring bioactive metabolites, we are aiming to extract, separate and synthesize new analogs of promising natural drug candidates.

  • PDF

9-Meric Peptide Analogs of Defensin-like Antimicrobial Peptide Coprisin with Potent Antibacterial Activities with Bacterial Sell Selectivites

  • Shin, Areum;Lee, Eunjung;Kim, Jin-Kyoung;Bang, Jeong-Kyu;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2809-2812
    • /
    • 2014
  • The 43-residue defensin-like peptide coprisin, which is isolated from dung bettle, Copris tripartitus, is a potent antimicrobial peptide. In our previous work, we determined the tertiary structure of coprisin and found that alpha helical region of coprisin from residue 19 to residue 30 is important for its antimicrobial activities. Here, we designed cop12mer and cop9mer analogs of coprisin based on the tertiary structure of coprisin. To investigate the relationship between hydrophobicity and antimicrobial activities and develop the potent peptide antibiotics, we designed cop9mer-1 with substitution of $His^2$ with Trp in cop9mer. The results showed that cop9mer-1 has higher toxicities as well as improved antimicrobial activities compared to cop9mer. In order to reduce the toxicity of cop9mer-1, we designed cop9mer-2 and cop9mer-3 with substitution of $Cys^3$ with Lys or Ser. Substitution of $Cys^3$ with these hydrophilic amino acids results in lower cytotoxicities compared to cop9mer-1. Cop9mer-2 with substitution of $Cys^3$ with Lys in Cop9mer-1 showed high antibacterial activities against drug resistant bacteria without cytotoxicity. Antibiotic action of cop9mer-1 analog appears to involve permeabilization of the bacterial cell membrane while cop9mer-2 and cop9mer-3 may have different mechanism of action. These results imply that that optimum balance in hydrophobicity and hydrophilicity in these 9-meric peptides plays key roles in their antimicrobial activities as well as cytotoxicities.

An NMR Study on the Phase Changes of Lipid Bilayers by Antimicrobial Peptides (항균성 펩타이드에 의한 지질 이중막의 상 변화에 대한 NMR 연구)

  • Kim, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • The phase changes of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) bilayers distorted by an antimicrobial peptide, a magainin 2 or an aurein 3.3 were investigated by using $^2H$ solid-state NMR (SSNMR) spectroscopy. From the theoretical simulation of the experimental $^2H$ solid-state NMR spectra the geometric structure constants and the lateral diffusion coefficients were obtained in the peptide-lipid mixture phases. Within five days of the peptide action on the lipid bilayers only the distorted alignment of the bilayers were measured but after 100 days an elliptic toroidal pore structure and an inverted hexagonal phase were formed in the presence of magainin 2 and aurein 3.3, respectively. In order to investigate the effect of an anionic lipid molecule on the actions of two peptides on the lipid bilayer, the same experiments were performed on the POPC_$d_{31}$/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) bilayer and the significant differences in the actions of two peptides on two bilayers of POPC_$d_{31}$ and POPC_$d_{31}$/POPG were measured.

Classification of Antimicrobial Peptides among the Innate Immune Modulators (선천성 면역조절자인 항생펩타이드 분류)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.833-838
    • /
    • 2015
  • Multidrug-resistant super bacterial, fungal, viral, and parasitic infections are major health threaten pathogens. However, to overcome the present healthcare situation, among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly produced via various species in nature. AMPs, small host defense proteins, are in charge of the innate immunity for the protection of multicellular organisms such as fish, amphibian, reptile, plants and animals from infection. The number of AMPs identified per year has increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been listed into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This report classified AMP into several categories including biological source, biological functions, peptide properties, covalent bonding pattern, and 3D structure. AMP functions not only antimicrobial activity but facilitates cell biological activity such as chemotatic activity. In addition, fibroblastic reticular cell (FRC) originated from mouse lymph node stroma induced the expression of AMP in inflammatory condition. AMP induced from FRC contained whey acidic protein (WAP) domain. It suggests that the classification of AMP will be done by protein domain.

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F.;Yoon, Sung-Sik;Diep, Dzung B.
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.675-690
    • /
    • 2007
  • Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

Ovarian Tumors in Rbp9 Mutants of Drosophila Induce an Immune Response

  • Kim, Jihyun;Kim, Chun;Kim-Ha, Jeongsil
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.228-232
    • /
    • 2006
  • The Drosophila protein, Rbp9, is homologous to human Hu, which is reported to be involved in small cell lung cancer. Rbp9 functions in cystocyte differentiation, and mutations in Rbp9 cause ovarian tumors. Here we show that the antimicrobial peptide, Attacin, is upregulated in Rbp9 mutants, especially in ovaries where tumors form. Upregulation seems to result from activation of the NF-${\kappa}B$ pathway since we detected nuclear localization of Relish in Rbp9 mutant ovaries but not in wild type ovaries. Inactivation of NF-${\kappa}B$ in the Rbp9 mutant allows prolonged survival of malformed egg chambers. We conclude that Drosophila initiates an anti-tumor defense response via activation of NF-${\kappa}B$.