Browse > Article

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review  

Nes, Ingolf F. (Laboratory for Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science)
Yoon, Sung-Sik (Department of Biological Resources and Technology, Yonsei University)
Diep, Dzung B. (Laboratory for Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science)
Publication Information
Food Science and Biotechnology / v.16, no.5, 2007 , pp. 675-690 More about this Journal
Abstract
Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.
Keywords
bacteriocin; lactic acid bacteria; classification; modes of action; gene regulation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 26  (Related Records In Web of Science)
Times Cited By SCOPUS : 25
연도 인용수 순위
1 Galvez A, Maqueda M, Martinez-Bueno M, Valdivia E. Bactericidal and bacteriolytic action of peptide antibiotic AS-48 against Grampositive and Gram-negative bacteria and other organisms. Res. Microbiol. 140: 57-68 (1989)   DOI   ScienceOn
2 Oh SJ, Heo HJ, Park DJ, Kim SH, Lee SJ, Imm JY. Effect of encapsulated bacteriocin on acid production and growth of starter cultures in yoghurt. Food Sci. Biotechnol. 15: 902-907 (2006)   과학기술학회마을
3 Lee NK, Kim KT, Kim CJ, Paik HD. Optimized production of lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 isolated from jeotgal. Food Sci. Biotechnol. 13: 6-10 (2004)
4 Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788 (2005)   DOI   ScienceOn
5 Bonelli RG, Wiedemann I, Sahl HG. Lanli biotics. pp. 97-105. In: Handbook of Biological Active Peptides. Academic Press, San Diego, CA, USA (2006)
6 Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. R. 70: 564-582 (2006)   DOI   ScienceOn
7 Jack RW, Jung G. Lantibiotics and microcins: Polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4: 310-317 (2000)   DOI   ScienceOn
8 Patton GC, van der Donk WA. New developments in lantibiotic biosynthesis and mode of action. Curr. Opin. Microbiol. 8: 543-551 (2005)   DOI   ScienceOn
9 Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced by lactic acid bacteria: Structure, function, and applications. Anton. Van Leeuw. 82: 165-185 (2002)   DOI   ScienceOn
10 Jung G. Lantibiotics: A survey. pp. 1-35. In: Nisin and Novel Lantibiotics. Jung G, Sahl H-G (eds). ESCOM Science Publishers, Leiden, The Netherlands (1991)
11 Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. Plantaricin W from Lactobacillus plantarum belongs to a new family of twopeptide lantibiotics. Microbiology 147: 643-651 (2001)   DOI
12 Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: Biosynthesis of lantibiotics. Anton. Van Leeuw. 69: 109-117 (1996)   DOI
13 Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361-2364 (1999)   DOI   ScienceOn
14 O'Connor EB, Cotter PD, O'Connor P, O'Sullivan O, Tagg JR, Ross RP, Hill C. Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics, and biological activity. BMC Microbiol 7: 24 (2007)   DOI
15 Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276: 1772-1779 (2001)   DOI
16 Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG. Mode of action of the lantibiotic mersacidin: Inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Ch. 39: 714-719 (1995)   DOI   ScienceOn
17 Brotz H, Bierbaum G, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur. J. Biochem. 246: 193-199 (1997)   DOI   ScienceOn
18 Heng NCK, Tagg JR. What's in a name? Class distinction for bacteriocins. Nature Reviews Microbiology 4. Available online at http://www.nature.com/nrmicro/journal/v4/full/nrmicro1273-cI.html. Accessed Sept. 1, 2006
19 Diep DB, Havarstein LS, Nes IF. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178: 4472-4483 (1996)   DOI
20 Franke CM, Leenhouts KJ, Haandrikman AJ, Kok J, Venema G, Venema K. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J. Bacteriol. 178: 1766- 1769 (1996)   DOI
21 Leer RJ, van der Vossen JM, van Giezen M, van Noort JM, Pouwels PH. Genetic analysis ofacidocin B, a novel bacteriocin produced by Lb. acidophilus. Microbiology 141: 1629-1635 (1995)   DOI   ScienceOn
22 Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 178: 3585-3593 (1996)   DOI
23 Chen Y, Ludescher RD, Montville TJ. Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl. Environ. Microb. 64: 3530-3532 (1998)
24 Allende A, Martinez B, Selma V, Gil MI, Suarez JE, Rodriguez A. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiol. 24: 759-766 (2007)   DOI   ScienceOn
25 Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microb. 62: 1676-1682 (1996)
26 Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500 (1991)   DOI
27 Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microb. 64: 3275-3281 (1998)
28 Johnsen L, Fimland G, Nissen-Meyer J. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem. 280: 9243-9250 (2005)   DOI   ScienceOn
29 Fimland G, Jack R, Jung G, Nes IF, Nissen-Meyer J. The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the Cterminus. Appl. Environ. Microb. 64: 5057-5060 (1998)
30 Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42: 11417-11426 (2003)   DOI   ScienceOn
31 Stanton C, Ross RP, Hill C. Salivaricin P, one of a family of twocomponent antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl. Environ. Microb. 73: 3719-3723 (2007)   DOI   ScienceOn
32 Fimland G, Eijsink VG, Nissen-Meyer J. Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41: 9508-9515 (2002)   DOI   ScienceOn
33 Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. P. Natl. Acad. Sci. USA 104: 2384-2389 (2007)
34 Garneau S, Martin NI, Vederas JC. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84: 577-592 (1986)   DOI   ScienceOn
35 Blom H, Katla T, Holck A, Sletten K, Axelsson L, Holo H. Characterization, production, and purification of leucocin H, a twopeptide bacteriocin from Leuconostoc MF215B. Curr. Microbiol. 39: 43-48 (1999)   DOI
36 Cuozzo SA, Sesma F, Palacios JM, de Ruiz Holgado AP, Raya RR. Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lb. casei CRL 705. FEMS Microbiol. Lett. 185: 157-161 (2000)   DOI
37 Franz CM, Grube A, Herrmann A, Abriouel H, Starke J, Lombardi A, Tauscher B, Holzapfel WH. Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl. Environ. Microb. 68: 2550-2554 (2002)   DOI
38 Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y, Vandenesch F. Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun. 65: 95-100 (1997)
39 Hauge HH, Nissen-Meyer J, Nes IF, Eijsink VG. Amphiphilic alpha-helices are important structural motifs in the alpha and beta peptides that constitute the bacteriocin lactococcin G--enhancement of helix formation upon alpha-beta interaction. Eur. J. Biochem. 251: 565-572 (1998)   DOI   ScienceOn
40 Skaugen M, Cintas L, Nes IF. Genetics of bacteriocin production in lactic acid bacteria. Vol. 3, pp. 225-249. In: Genetic of Lactic Acid Bacteria. Wood BJB, Warner PJ (eds). Kluwer Academic/ Plenum Publishers, London, UK (2003)
41 Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS. Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J. Bacteriol. 180: 1988-1994 (1998)
42 Booth MC, Hatter KL, Miller D, Davis J, Kowalski R, Parke DW, Chodosh J, Jett BD, Callegan MC, Penland R, Gilmore MS. Molecular epidemiology of Staphylococcus aureus and Enterococcus faecalis in endophthalmitis. Infect. Immun. 66: 356-360 (1998)
43 Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Co. 218: 408-413 (1996)   DOI   ScienceOn
44 Bizani D, Dominguez AP, Brandelli A. Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbiol. 41: 269-273 (2005)   DOI   ScienceOn
45 Kawai Y, Saito T, Kitazawa H, Itoh T. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Biosci. Biotech. Bioch. 62: 2438-2440 (1998)   DOI   ScienceOn
46 Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect. Immun. 68: 2475-2483 (2000)   DOI
47 Ramnath M, Beukes M, Tamura K, Hastings JW. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Appl. Environ. Microb. 66: 3098-3101 (2000)   DOI
48 Risoen PA, Brurberg MB, Eijsink VG, Nes IF. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 37: 619- 628 (2000)   DOI   ScienceOn
49 Sulavik MC, Tardif G, Clewell DB. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J. Bacteriol. 174: 3577-3586 (1992)   DOI
50 Chaussee MS, Ajdic D, Ferretti JJ. The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect. Immun. 67: 1715-1722 (1999)
51 Mortvedt CI, Nissen-Meyer J, Sletten K, Nes IF. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microb. 57: 1829-1834 (1991)
52 Rawlinson EL, Nes IF, Skaugen M. LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 84: 559-567 (2002)   DOI   ScienceOn
53 Tominaga T, Hatakeyama Y. Development of innovativepediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl. Environ. Microb. 73: 5292-5299 (2007)   DOI   ScienceOn
54 Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin, and other lantibiotics. Mol. Microbiol. 30: 317-327 (1998)   DOI   ScienceOn
55 Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J. Mol. Biol. 311: 939-949 (2001)   DOI   ScienceOn
56 Morgan SM, O'Connor P, Cotter PD, Ross RP, Hill C. Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob. Agents Ch. 49: 2606-2611 (2005)   DOI   ScienceOn
57 Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microb. 63: 4321- 4330 (1997)
58 Richards RC, O'Neil DB, Thibault P, Ewart KV. Histone H1: An antimicrobial protein of Atlantic salmon (Salmo salar). Biochem. Biophys. Res. Co. 284: 549-555 (2001)   DOI   ScienceOn
59 Netz DJ, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos Mdo C, Sahl HG. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J. Mol. Biol. 319: 745-756 (2002)   DOI   ScienceOn
60 Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M. Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl. Environ. Microb. 69: 5746-5753 (2003)   DOI
61 Floriano B, Ruiz-Barba JL, Jimenez-Diaz R. Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl. Environ. Microb. 64: 4883-4890 (1998)
62 Schved F, Henis Y, Juven BJ. Response of spheroplasts and chelatorpermeabilized cells of Gram-negative bacteria to the actionof the bacteriocins pediocin SJ-1 and nisin. Int. J. Food Microbiol. 21: 305-314 (1994)   DOI   ScienceOn
63 Skaugen M, Nissen-Meyer J, Jung G, Stevanovic S, Sletten K, Inger C, Abildgaard M, Nes IF. In vivo conversion of L-serine to Dalanine in a ribosomally synthesized polypeptide. J. Biol.Chem. 269: 27183-27185 (1994)
64 Fimland G, Eijsink VG, Nissen-Meyer J. Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148: 3661-3670 (2002)   DOI
65 Nes IF, Diep DB, Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189: 1189-1198 (2007)   DOI   ScienceOn
66 Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: A novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153: 1619-1630 (2007)   DOI   ScienceOn
67 Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG. The mode of action of the lantibiotic lacticin 3147--a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol. Microbiol. 61: 285-296 (2006)   DOI   ScienceOn
68 Ennahar S, Deschamps N. Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microb. 88: 449-457 (2000)   DOI   ScienceOn
69 Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structureactivity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. P. Nat. Aca. Sci. USA 97: 8245-8250 (2000)
70 Cobos ES, Filimonov VV, Galvez A, Valdivia E, Maqueda M, Martinez JC, Mateo PL. The denaturation of circular enterocin AS- 48 by urea and guanidinium hydrochloride. Biochim. Biophys. Acta 1598: 98-107(2002)   DOI
71 Luders T, Birkemo GA, Nissen-Meyer J, Andersen O, Nes IF. Proline conformation-dependent antimicrobial activity of a prolinerich histone h1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob. Agents Ch. 49: 2399-2406 (2005)   DOI   ScienceOn
72 Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879-3887 (1991)   DOI
73 Joosten HM, Nunez M, Devreese B, Van Beeumen J, Marugg JD. Purification and characterization of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4. Appl. Environ. Microb. 62: 4220-4223 (1996)
74 Lyon WR, Gibson CM, Caparon MG. A role for trigger factor and an rgg-like regulator in the transcription, secretion, and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J. 17: 6263-6275 (1998)   DOI   ScienceOn
75 Cobos ES, Filimonov VV, Galvez A, Maqueda M, Valdivia E, Martinez JC, Mateo PL. AS-48: A circular protein with an extremely stable globular structure. FEBS Lett. 505: 379-382 (2001)   DOI   ScienceOn
76 Havarstein LS, Holo H, Nes IF. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140: 2383-2389 (1994)   DOI
77 Bauer R, Chikindas ML, Dicks LM. Purification, partial amino acid sequence, and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int. J. Food Microbiol. 101: 17-27 (2005)   DOI   ScienceOn
78 Havarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16: 229-240 (1995)   DOI   ScienceOn
79 Henderson JT, Chopko AL, van Wassenaar PD. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295: 5-12 (1992)   DOI   ScienceOn
80 Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: Spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36: 15062- 15072 (1997)   DOI   ScienceOn
81 Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J. Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl. Environ. Microb. 69: 5839-5848 (2003)   DOI
82 Hechard Y, Derijard B, Letellier F, Cenatiempo Y. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138: 2725- 2731(1992)   DOI   ScienceOn
83 Luders T, BirkemoGA, Fimland G, Nissen-Meyer J, Nes IF. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl. Environ. Microb. 69: 1797-1799 (2003)   DOI
84 Kolter R, Moreno F. Genetics of ribosomally synthesized peptide antibiotics. Ann. Rev. Microbiol. 46: 141-163 (1992)   DOI   ScienceOn
85 Hyink O, Balakrishnan M, Tagg JR. Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol. Lett. 252: 235-241 (2005)   DOI   ScienceOn
86 Maldonado A, Ruiz-Barba JL, Floriano B, Jimenez-Diaz R. The locus responsible for production of plantaricin S, a class IIb bacteriocin produced by Lb. plantarum LPCO10, is widely distributed among wild-type Lb. plantarum strains isolated from olive fermentations. Int. J. Food Microbiol. 77: 117-124 (2002)   DOI   ScienceOn
87 Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez PE, Nes IF. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806-6814 (2000)   DOI
88 Diep DB, Johnsborg O, Risoen PA, Nes IF. Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum. Mol. Microbiol. 41: 633-644 (2001)   DOI   ScienceOn
89 Dufour A, Hindre T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol. Rev. 31: 134-167 (2007)   DOI   ScienceOn
90 Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 1405-1414 (2004)   DOI   ScienceOn
91 Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microb. 61: 2643-2648 (1995)
92 McAuliffe O, O'Keeffe T, Hill C, Ross RP. Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol. Microbiol. 39: 982-993 (2001)   DOI   ScienceOn
93 Sulavik MC, Clewell DB. Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J. Bacteriol. 178: 5826- 5830 (1996)   DOI
94 Lim SM, Park MY, Chang DS. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 Isolated from meju. Food Sci. Biotechnol. 14: 49-57 (2005)
95 Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins-the lantibiotics. Biopolymers 55: 62-73 (2000)   DOI   ScienceOn
96 Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microb. 72: 1459-1466 (2006)   DOI   ScienceOn
97 Katla T, Naterstad K, Vancanneyt M, Swings J, Axelsson L. Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl. Environ. Microb. 69: 4431-4417 (2003)   DOI
98 Wang Y, Henz ME, Gallagher NL, Chai S, Gibbs AC, Yan LZ, Stiles ME, Wishart DS, Vederas JC. Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38: 15438-15447 (1999)   DOI   ScienceOn
99 de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 34: W273-W279 (2006)   DOI   ScienceOn
100 Tichaczek PS, Nissenmeyer J, Nes IF, Vogel RF, Hammes WP. Characterization of the bacteriocins curvacin-a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Syst. Appl. Microbiol. 15: 460-468 (1992)   DOI
101 Risoen PA, Havarstein LS, Diep DB, Nes IF. Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Gen. Genet. 259: 224-232 (1998)
102 Watson DC, Yaguchi M, Bisaillon JG, Beaudet R, Morosoli R. The amino acid sequence of a gonococcal growth inhibitor from Staphylococcus haemolyticus. Biochem. J. 252: 87-93 (1988)   DOI
103 Gonzalez C, Langdon GM, Bruix M, Galvez A, Valdivia E, Maqueda M, Rico M. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. P. Natl. Acad. Sci. USA 97: 11221-11226 (2000)
104 Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, TatenoY, Itoh T, Saito T. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl. Environ. Microb. 70: 2906-2911 (2004)   DOI
105 Dupuy B, Raffestin S, Matamouros S, Mani N, Popoff MR, Sonenshein AL. Regulation of toxin and bacteriocin gene expression in Clostridiumby interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60: 1044-1057 (2006)   DOI   ScienceOn
106 Kalmokoff ML, Teather RM. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: Evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl. Environ. Microb. 63: 394-402 (1997)
107 Moll GN, van den Akker E, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol. 181: 4848-4852 (1999)
108 Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304 (1995)   DOI   ScienceOn
109 Nes IF, Brede DA, Holo H. The non-lantibiotic heat-stable bacteriocins in Gram-positive bacteria. pp. 107-114. In: Handbook of Biological Active Peptides. Kastin J (ed). Academic Press, San Diego, CA, USA (2006)
110 Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VG, Nissen-Meyer J. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 182: 2643-2648 (2000)   DOI
111 Gajic O, Buist G, Kojic M, Topisirovic L, Kuipers OP, Kok J. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J. Biol. Chem. 278: 34291-34298 (2003)   DOI   ScienceOn
112 Brede DA, Faye T, Johnsborg O, Odegard I, Nes IF, Holo H. Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl. Environ. Microb. 70: 7303-7310 (2004)   DOI   ScienceOn
113 Martinez-Bueno M, Valdivia E, Galvez A, Coyette J, Maqueda M. Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol. Microbiol. 27: 347-358 (1998)   DOI   ScienceOn
114 Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J. Antagonistic activity of Lb. plantarumC11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microb. 64: 2269-2272 (1998)
115 Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA. Lacticin 481: In vitro reconstitution of lantibiotic synthetase activity. Science 303: 679-681 (2004)   DOI   ScienceOn
116 Varcamonti M, Nicastro G, Venema G, Kok J. Proteins of the lactococcin A secretion system: lcnD encodes two in-frame proteins. FEMS Microbiol. Lett. 204: 259-263 (2001)   DOI
117 Chikindas ML, Garcia-Garcera MJ, Driessen AJ, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN, Venema G. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microb. 59: 3577-3584 (1993)
118 Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. P. Natl. Acad. Sci. USA 104: 7617-7621 (2007)
119 Putsep K, Branden CI, Boman HG, Normark S. Antibacterial peptide from Helicobacter pylori. Nature 398: 671-672 (1999)   DOI   ScienceOn
120 Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers OP, Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microb. 69: 1589-1597 (2003)   DOI
121 Ra R, Beerthuyzen MM, de Vos WM, Saris PE, Kuipers OP. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145: 1227- 1233 (1999)   DOI   ScienceOn
122 Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C. Extensive post-translational modification, including serine to Dalanine conversion, in the two-component lantibiotic, lacticin 3147. J. Biol. Chem. 274: 37544-37550 (1999)   DOI   ScienceOn
123 Birkemo GA, Luders T, Andersen O, Nes IF, Nissen-Meyer J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim. Biophys. Acta 1646: 207-215 (2003)   DOI   ScienceOn
124 Siezen RJ, Kuipers OP, de Vos WM. Comparison of lantibiotic gene clusters and encoded proteins. Anton. Van Leeuw. 69: 171-184 (1996)   DOI
125 McAuliffe O, Hill C, Ross RP. Each peptide of the two-component lantibiotic lacticin 3147 requires a separate modification enzyme for activity. Microbiology 146: 2147-2154 (2000)   DOI
126 Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin derived peptide with antimicrobial, antiviral, antitumor, and immunological properties. Cell Mol. Life Sci. 62: 2588-2598 (2005)   DOI
127 Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM. Quorum sensing by peptide pheromones and two-component signaltransduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895-904 (1997)   DOI   ScienceOn
128 Nes IF, Johnsborg O. Exploration of antimicrobial potential in LAB by genomics. Curr. Opin. Biotechnol. 15: 100-104 (2004)   DOI   ScienceOn
129 Sánchez-Hidalgo M, Maqueda M, Galvez A, Abriouel H, Valdivia E, Martínez-Bueno M. The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl. Environ Microb. 69: 1633-1641 (2003)   DOI
130 Faye T, Brede DA, Langsrud T, Nes IF, Holo H. An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J. Bacteriol. 184: 3649-3656 (2002)   DOI
131 Kluskens LD, Kuipers A, Rink R, de Boef E, Fekken S, Driessen AJ, Kuipers OP, Moll GN. Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibioticnisin. Biochemistry 44: 12827-12834 (2005)   DOI   ScienceOn
132 Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB. Genetic structure of the Enterococcus faecalis plasmid pAD1- encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7335-7344 (1994)   DOI
133 Majhenic AC, Venema K, Allison GE, Matijasic BB, Rogelj I, Klaenhammer TR. DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lb. gasseri LF221. Appl. Microbio. Biot. 63: 705-714 (2004)   DOI
134 Rawlinson EL, Nes IF, Skaugen M. Identification of the DNAbinding site of the Rgg-like regulator LasX within the lactocin S promoter region. Microbiology 151: 813-823 (2005)   DOI   ScienceOn
135 Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1. J. Bacteriol. 179: 7843-7855 (1997)   DOI
136 Dalet K, Cenatiempo Y, Cossart P, Hechard Y. A sigma(54)- dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147: 3263-3269 (2001)   DOI
137 Hechard Y, Pelletier C, Cenatiempo Y, Frere J. Analysis of sigma (54)-dependent genes in Enterococcus faecalis: A mannose PTS permease EII(Man) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147: 1575-1580 (2001)   DOI
138 Cotter PD, O'Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP. Posttranslational conversion of L-serines to Dalanines is vital for optimal production and activity of the lantibiotic lacticin 3147. P. Natl. Acad. Sci. USA 102: 18584-18589 (2005)
139 Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105: 633-684 (2005)   DOI   ScienceOn
140 Pag U, Sahl HG. Multiple activities in lantibiotics--models for the design of novel antibiotics? Curr. Pharm. Design 8: 815-833 (2002)   DOI   ScienceOn
141 Diep DB, Havarstein LS, Nes IF. A bacteriocin-like peptide induces bacteriocin synthesis in Lb. plantarum C11. Mol. Microbiol. 18: 631-639 (1995)   DOI   ScienceOn
142 Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138: 2715-2720 (1992)   DOI   ScienceOn
143 Diaz M, Valdivia E, Martinez-Bueno M, Fernandez M, Soler- Gonzalez AS, Ramirez-Rodrigo H, Maqueda M. Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl. Environ. Microb. 69: 1229- 1236 (2003)   DOI
144 Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl. Environ. Microb. 72: 3383-3389 (2006)   DOI   ScienceOn
145 Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Lactococcin G is a potassium ionconducting, two-component bacteriocin. J. Bacteriol. 178: 600-605 (1996)   DOI
146 Zheng G, Yan LZ, Vederas JC, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355 (1999)
147 Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vandenbergh PA. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microb. 58: 2360-2367 (1992)
148 Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Appl. Environ. Microb. 73: 2871-2877 (2007)   DOI   ScienceOn
149 Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311: 1464-1467 (2006)   DOI   ScienceOn
150 Ruhr E, Sahl HG. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Ch. 27: 841-845 (1985)   DOI   ScienceOn
151 Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T. Production, purification, and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int. J. Food Microbiol. 34: 145-156 (1997)   DOI   ScienceOn
152 Fimland G, Pirneskoski J, Kaewsrichan J, Jutila A, Kristiansen PE, Kinnunen PK, Nissen-Meyer J. Mutational analysis and membraneinteractions of the beta-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. Biochim. Biophys. Acta 1764: 1132-1140 (2006)   DOI   ScienceOn
153 Morisset D, Berjeaud JM, Marion D, Lacombe C, Frere J. Mutational analysis of mesentericin y105, an anti-Listeria bacteriocin, for determination of impact on bactericidal activity, in vitro secondary structure, and membrane interaction. Appl. Environ. Microb. 70: 4672-4680 (2004)   DOI   ScienceOn
154 Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29: 1097-1106 (2001)   DOI   ScienceOn
155 Hoffmann A, Pag U, Wiedemann I, Sahl HG. Combination of antibiotic mechanisms in lantibiotics. Farmaco 57: 685-691 (2002)   DOI   ScienceOn
156 Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148: 973-984 (2002)   DOI
157 Hauge HH, Mantzilas D, Eijsink VG, Nissen-Meyer J. Membranemimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K. J. Bacteriol. 181: 740-747 (1999)
158 Birkemo GA, Mantzilas D, Luders T, Nes IF, Nissen-Meyer J. Identification and structural analysis of the antimicrobial domain in hipposin, a 51-mer antimicrobial peptide isolated from Atlantic halibut. Biochim. Biophys. Acta 1699: 221-227 (2004)   DOI
159 Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: The C-terminal region is important for determining specificity. Appl. Environ. Microb. 62: 3313-3318 (1996)
160 Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Ch. 42: 154-160 (1998)
161 Allison GE, Klaenhammer TR. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillusspecific, food-grade genetic marker. Appl. Environ. Microb. 62: 4450-4460 (1996)
162 Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J. Mol. Biol. 311: 939-949 (2001)   DOI   ScienceOn
163 Garnier T, Cole ST. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J. Bacteriol. 168: 1189-1196 (1986)   DOI
164 Faye T, Brede DA, Langsrud T, Nes IF, Holo H. An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J. Bacteriol. 184: 3649-3656 (2002)   DOI
165 Straume D, Kjos M, Nes IF, Diep DB. Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol. Genet. Genomics 278: 283-293 (2007)   DOI
166 Qi F, Chen P, Caufield PW. Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl. Environ. Microb. 65: 652-658 (1999)
167 Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 437: 258-262 (1998)   DOI   ScienceOn
168 Worobo RW, Van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 3143-3149 (1995)   DOI
169 Nieto Lozano JC, Meyer JN, Sletten K, Pelaz C, Nes IF. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol. 138: 1985-1990 (1992)   DOI   ScienceOn
170 Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686- 5692 (1992)   DOI
171 Diep DB, Myhre R, Johnsborg O, Aakra A, Nes IF. Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol. Microbiol. 47: 483-494 (2003)   DOI   ScienceOn
172 Nes IF, Eijsink VGH. Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechansims. pp. 175-192. In: Cell- Cell Signaling in Bacteria. Dunny GM, Winans SC (eds). ASM Press, Washington DC, USA (1999)
173 Maqueda M, Galvez A, Bueno MM, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E. Peptide AS-48: Prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci. 5: 399-416 (2004)   DOI   ScienceOn
174 Ghrairi T, Frere J, Berjeaud JM, Manai M. Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. Int. J. Food Microbiol. 105: 389-398 (2005)   DOI   ScienceOn
175 Oppegard C, Fimland G, Thorbaek L, Nissen-Meyer J. Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl. Environ. Microb. 73: 2931-2938 (2007)   DOI   ScienceOn
176 Skaugen M, Andersen EL, Christie VH, Nes IF. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl. Environ. Microb. 68: 720-727 (2002)   DOI
177 McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. P. Natl. Acad. Sci. USA 103: 17243- 17248 (2006)
178 Kawai Y, Kemperman R, Kok J, Saito T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci. 5: 393-398 (2004)   DOI   ScienceOn
179 Xie L, van der Donk WA. Post-translational modifications during lantibiotic biosynthesis. Curr. Opin. Chem. Biol. 8: 498-507 (2004)   DOI   ScienceOn
180 Navaratna MA, Sahl HG, Tagg JR. Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect. Immun. 67: 4268-4271 (1999)
181 McCormick JK, Poon A, Sailer M, Gao Y, Roy KL, McMullen LM, Vederas JC, Stiles ME, Van Belkum MJ. Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl. Environ. Microb. 64: 4757-4766 (1998)
182 Konisky J. Colicins and other bacteriocins with established modes of action. Ann. Rev. Microbiol. 36: 125-144 (1982)   DOI   ScienceOn
183 Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H. Biosynthesis of bacteriocins in lactic acid bacteria. Anton. Van Leeuw. 70: 113-128 (1996)   DOI
184 Brock TD, Davie JM. Probable identity of a group D hemolysin with a bacteriocine. J. Bacteriol. 86: 708-712 (1963)
185 Brede DA, Faye T, Johnsborg O, Odegêard I, Nes IF, Holo H. Heterologous production of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl. Environ. Microb. 71: 8077-8084 (2004)   DOI   ScienceOn
186 Kleerebezem M, de Vos WM, Kuipers OP. The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. pp. 159-174. In: Cell-Cell Signaling in Bacteria. Dunny GM, Winans SC (eds). ASM Press, Washington DC, USA (1999)
187 Wiedemann I, Bottiger T, Bonelli RR, Schneider T, Sahl HG, Martinez B. Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl. Environ. Microb. 72: 2809-2814 (2006)   DOI   ScienceOn
188 Ennahar S, Sonomoto K, Ishizaki A. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87: 705-716 (1999)   DOI   ScienceOn
189 Risoen PA, Johnsborg O, Diep DB, Hamoen L, Venema G, Nes IF. Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol. Genet. Genomics 265: 198-206 (2001)   DOI   ScienceOn
190 Breukink E. A lesson in efficient killing from two-component lantibiotics. Mol. Microbiol. 61: 271-273 (2006)   DOI   ScienceOn
191 Jack RW, Bierbaum G, Sahl HG. Lantibiotics and Related Peptides. Springer-Verlag Berlin, Germany. pp. 1-224 (1998)
192 Cotter PD, Hill C, Ross RP. Bacterial lantibiotics: Strategies to improve therapeutic potential. Curr. Protein Pept. Sc. 6: 61-75 (2005)   DOI   ScienceOn
193 Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob. Agents Ch. 49: 541-548 (2005)   DOI   ScienceOn
194 Joosten HM, Rodriguez E, Nunez M. PCR detection of sequences similarto the AS-48 structural gene in bacteriocin-producing enterococci. Lett. Appl. Microbiol. 24: 40-42 (1997)   DOI   ScienceOn
195 Vaughan A, Eijsink VG, Van Sinderen D. Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl. Environ. Microb. 69: 7194-7203 (2003)   DOI
196 Moll G, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Mechanistic properties of the two-component bacteriocin lactococcin G. J. Bacteriol. 180: 96-99 (1998)
197 Criado R, Diep DB, Aakra A, Gutierrez J, Nes IF, Hernandez PE, Cintas LM. Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bcteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl. Environ. Microb. 72: 6653-6656 (2006)   DOI   ScienceOn
198 Haas W, Shepard BD, Gilmore MS. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415: 84-87 (2002)   DOI   ScienceOn
199 Chun W, Hancock RE. Action of lysozyme and nisin mixtures against lactic acid bacteria. Int. J. Food Microbiol. 60: 25-32 (2000)   DOI   ScienceOn