• Title/Summary/Keyword: Antimicrobial Film

Search Result 101, Processing Time 0.026 seconds

Evaluation of Manufacturing and Biological Properties of Y Zone Care Hydrogel Solution (Y존 케어 하이드로젤솔루션의 제조 및 생물학적 특성 평가)

  • Eun-Ji Kim;In-Kyoung Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 2024
  • In recent industrialization and development due to information and communication technology, modern women in modern society are exposed to physical and mental health due to numerous stresses. Popular inflammations are attributable to a decrease in lactic acid bacteria, frequent antibiotic use, and a decrease in immunity. It is necessary to develop products that are helpful and reflected. The inner care gel currently introduced on the market can increase beneficial bacteria and maintain a healthy y-zone. The inner gel contains a hydrogel component. 90% is made up of water, and other components act as support for supporting water and are formed through crosslinking between polymer chains. Hydroxyethyl cellulose (HEC) is a hydroxyethyl ethylenetel of cellulose. The purpose of use is to act as a binder, an emulsion stabilizer, a viscosity enhancer (water-soluble), and a film forming agent. CA (crosslinker) is a crosslinking agent and serves to bind. Hydrogel in the beauty field acts as a film forming agent that gently wraps around the skin by forming a thin film and serves as an emulsion stabilizer that helps to prevent separation of other raw materials. It also acts as a thickener by increasing viscosity in cosmetics. In addition, it is used for glucose monitoring, nursing care, cell transplantation, and wound treatment in the bio field. Currently, it is understood that no products using functional hydrogel have been released, so in this study, a Y zone care hydrogel solution was manufactured to find out the antibacterial properties of the functional hydrogel, and a new solution was developed. As a result, it was confirmed that the appropriate Ph was applied to the Y zone, and after culturing Candida albicans in PDB medium, all three products of the Y zone care hydrogel solution showed an antibacterial effect of 0.5-1.0mm

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging (녹색합성법에 기인한 식품포장용 키토산-은나노 항균 복합필름의 개발)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.347-351
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.

Antibacterial Properties of Poly-butylene Adipate Terephthalate With Zinc Pyrithione Composites (Zinc pyrithione을 함유한 poly-butylene adipate terephthalate 복합체의 항균 특성)

  • Tae-gyeun Kim;Woo-Suk Jung;Daesuk Bang;Kwang-Hwan Jhee
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.540-547
    • /
    • 2024
  • The continuous use of polymer materials has exacerbated waste and environmental challenges, spurring a growing interest in eco-friendly polymers, especially biodegradable polymers. These polymers are gaining attention for their potential as antimicrobial agents, particularly in fields like food packaging a need further underscored by the recent COVID-19 pandemic. This study focuses on the development of an antibacterial polymer by combining poly-butylene adipate terephthalate (PBAT) with zinc pyrithione (ZnPt). The antibacterial properties were assessed through turbidity analysis, the shaking flask method, and the film adhesion method. The antibacterial activities of the composites with varying ZnPt% (w/w) contents (0, 0.1, 0.3, and 0.5) were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results revealed that even at a low concentration of 0.1% (w/w), the composites demonstrated significant antibacterial activity against both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). Composites with ZnPt concentrations of 0.3% (w/w) or higher achieved over 99.999% antibacterial efficacy. Field emission scanning electron microscopy (FE-SEM) analysis of the fracture surfaces of the composites confirmed the uniform distribution of ZnPt particles, ranging from 1-4 ㎛. Further FE-SEM analysis of bacterial suspensions exposed to the composite surfaces showed clear evidence of cell wall destruction in both E. coli and S. aureus. As an antimicrobial biodegradable polymer, PBAT-ZnPt composites show great promise for applications in various sectors, including food packaging.

Antiviral Effects of Titanium Dioxide Photocatalyst Treated Films against Highly Pathogenic Avian Influenza (고병원성 조류인플루엔자(H5N1)에 대한 이산화티타늄 광촉매 처리 필름의 항바이러스성 연구)

  • Lee, Sang-Do;Park, Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.201-206
    • /
    • 2021
  • Damage to the highly pathogenic avian influenza virus(H5N1) continues to increase, but there is a lack of antiviral research. In this study, we analyze antiviral properties on H5N1 by coating Cu/TiO2 photocatalyst on polyethylene films. The specimen was manufactured a photocatalyst master batch and coated both sides of the 3-layer polyethylene fabric at 280℃ from the extrusion coating machine. The results showed a 99.9% decrease in the Staphylococcus aureus and Escherichia coli. In particular, H5N1 type highly pathogenic avian influenza viruses, which is capable of human infection, has been found to decrease 99.9% within five minutes of contact with Cu/TiO2 films. Antibacterial effects of films coated with photocatalyst are known, but this study also confirmed the antiviral effects.

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

Effects of methanol extract of Aralia continentalis on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans (독활 메탄올 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성 억제에 미치는 영향)

  • Yu, Hyeon-Hee;Seo, Se-Jeong;Kim, Yeon-Hwa;Lee, Hae-Youn;Gum, Gi-Chun;Na, Jong-Chan;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.87-91
    • /
    • 2005
  • Dental plaque is a film of microorganisms on the tooth surface that plays an important part in the development of caries and periodontal diseases. Streptococcus mutans (S. mutans) is present in almost all types of dental plaque. Teeth and their supporting structure, the gums (gingiva) are subjected to infection by S. mutans that causes cavities and pyorrhea which, if left untreated, can eventually lead to gingivitis. Various chemical agents have been evaluated over the years with respect to their antimicrobial effects in the oral cavity; however, all are associated with side effects that prohibit regular long-term use. The present study was designed to investigate the effect of Aralia continentalis (Araliaceae) extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of S. mutans. The methanol extract of A. continentalis showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.25, 0.5, 1, 2 and 4 mg/ml compared to the control group. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 60% at the concentration of 0.25 mg/ml and complete inhibition was observed at the concentration of 4 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan from sucrose, methanol extract of A. continentalis showed more than 10% inhibition over the concentration of 0.25 mg/ml. The synthesis of insoluble glucan was decreased in the presence of 0.25 - 4 mg/ml of the methanol extract of A. continentalis. Hence, we conclude that A. continentalis might be a candidate of anticaries agent.

Study on the Extending Storage Life of Grape by Applying Edible Coating Materials (가식성 코팅물질을 이용한 포도의 저장성 연장 연구)

  • Kim, Joon-Yeol;Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Byung-Yong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.207-211
    • /
    • 2002
  • This study was conducted to increase the shelf life of grape by edible coating material such as methyl cellulose (MC) with antimicrobial substances, n-capric acid isopropyl ester (ci) and sodium nitrate (sn), added by spraying method. The quality changes of packaged grapes with wrapping PE film on EPS tray were investigated for 16 days at $30{\circ}C$. The shelf-lives of C and MCci based on the weight reduction ratio of 7% were 6 days and 9 days, respectively. The reduction rate of acidity of C was higher value than those of treatments during 18 days of storage at $30{\circ}C$. The vitamin C reduction ratios of C, MCsn and MCci were 64.8, 51.5 and 49.8%, respectively, after 16 days at $30{\circ}C$. The reduction rates of firmness of C, MCsn and MCci after 16 days at $30{\circ}C$ were 44.2, 26.5, and 23,2%, respectively compared to that of initial storage grapes. The additions of ci and sn had much affected the reductions of bacteria and yeast counts especially early stage of storage. The hedonic sensory evaluation scores of MCci and MCsn had higher values than those of MC.

Prevention from microbial post-harvest injury of fruits and vegetables by using grapefruit seed extract, a natural antimicrobial agent (천연항균제처리에 의한 과채류의 선도유지 및 병해방지에 관한 연구 -저장중 병리적 장해 방지를 중심으로-)

  • Cho, Sung-Hwan;Seo, Il-Won;Lee, Keun-Hoi
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.265-270
    • /
    • 1993
  • In order to retain the freshness of fruits and vegetables and to reduce the rate of disease damage, grafruit seed extract (GPSE), natural microorganism control agent, was applied during the preservation process of fresh fruits and vegetables. GFSE showed an effective inhibitory action against plant putrefactive bacteria and fungi which were involved in the decay of fruits and vegetables. Minimal inhibitory concentrations for GFSE against the microbes were in the range of 50 to 2,000 ppm. Direct observation of microbial cells and spores using electron microscopy showed their function was destroyed by the treatment of the dilute solutions of GFSE. Fresh Welsh onions, onions and red peppers treated with GFSE and stored in polyethylene film (0.1 mm) retained better quality in color and texture than the non-treated control. GFSE was efficient in controlling the germination of potatoes. It was observed that GFSE would reduce disease damages and have bactericidal and fungicidal properties during the storage of such fruits and vegetables as zucchinis, cucumbers, tomatoes and mandarin oranges.

  • PDF

Current Research Status of Postharvest and Packaging Technology of Oriental Melon (Cucumis melo var. makuwa) in Korea (국내 참외의 수확 후 관리 및 포장기술 연구)

  • Kim, Jung-Soo;Choi, Hong-Ryul;Chung, Dae-Sung;Lee, Youn-Suk
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.902-911
    • /
    • 2010
  • Oriental melon ($Cucumis$ $melo$ var. $makuwa$) is a popular and high-value market fruit cultivated in Korea. Consumers are becoming increasingly interested in oriental melon as a healthy diet over the past few years. However, the melons have relatively high quality loss because the fruit are mainly produced for a limited period of time in the summer season. Lack of the proper postharvest treatments and high temperature exposure at harvest or during distribution are the most critical environmental factors limiting postharvest life of fruit. This review focuses on the overview of current research studies for postharvest treatment and functional packaging technology of oriental melon in Korea. Major physiological problems of the harvest fruit include the ripening process in quality changes of the produce such as loss of weight, firmness, flavor, and decay during the storage periods. Low temperature at 7 to $10^{\circ}C$ with high relative humidity of 90 to 95% is the suitable environmental condition used to maintain the quality of fresh oriental melon. Controlled atmosphere (CA) storage or modified atmosphere (MA) packaging can be used as supplemental treatments to extend postharvest-life. For oriental melon, an optimum CA is currently recommended to be 2-3% oxygen and 5-10% carbon dioxide atmosphere. Precooling, pretreatments of ethylene action and functional packaging system can be applied to oriental melon after harvest in order to extend storage life. Major active packaging technologies are concerned with a selectively gas permeable film related to respiration of produce and the packaging applications of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness of fruit.